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1. Introduction

Non-linear σ-models in two dimensions with an N = (2, 2) supersymmetry, [1]–[4], are

an important tool in the study of type II superstrings in the absence of R-R fluxes. The

(local) target space geometry of such models is characterized by a metric, a closed 3-form

and two complex structures. The complex structures are covariantly constant and the

metric is hermitian with respect to both complex structures. These conditions can be

solved in terms of a single real potential, [5] (building on results in [6]–[9]), which has a

natural interpretation in d = 2, N = (2, 2) superspace where it is the Lagrange density.

The Lagrange density is a function of three types of scalar superfields (satisfying certain

constraints linear in the superspace derivatives) [5, 10]: chiral, twisted chiral and semi-

chiral superfields.

Whenever one wants to deal with (open) strings propagating in backgrounds which

include D-branes one necessarily needs to confront N = (2, 2) non-linear σ-models with

boundaries. Having a boundary breaks the N = (2, 2) supersymmetry down to an N = 2

supersymmetry. While a lot of attention has been devoted to these models [11]–[17], their

full description in N = 2 superspace remained till recently an unstudied problem. An

initial investigation in [18] showed that this was straightforward as long as one only deals

with chiral fields or put differently as long as one considers B-branes on Kähler manifolds.

In [19] this was extended to A-branes on Kähler manifolds. The field content of these

models consists exclusively of twisted chiral fields. The treatment of twisted chiral fields

in N = 2 boundary superspace turned out to be rather subtle and an elegant and rich

structure emerged. Duality transformations turning A- into B-branes and vice-versa were

developed as well.

Kähler manifolds are only a particular example of the geometries which allow for an

N = (2, 2) bulk supersymmetry. In general such a geometry is called bihermitian. In the

present paper we extend the analysis of [19] to bihermitian geometries restricting ourselves

to the simplest non-trivial case in which the two complex structures associated with the

bihermitian geometry mutually commute. In N = (2, 2) superspace this corresponds to the

case in which the bulk geometry is parameterized by chiral and twisted chiral superfields

simultaneously. While still relatively simple, these models already encompass the Kähler

case as they allow for non-trivial NS-NS backgrounds.

Finally, let us remark that the study of D-branes in the most general bihermitian

geometry requires the introduction of semi-chiral N = (2, 2) superfields as well. This will

appear elsewhere [20].

This paper is organized as follows. In the next section we briefly review supersymmetric

non-linear σ-models in N = 1 boundary superspace. Section 3 introduces N = 2 boundary

superspace together with the chiral and twisted chiral superfields. In section 4 we determine

the boundary conditions which are allowed in the presence of chiral and twisted chiral

superfields. The results of section 4 are illustrated by several explicit examples in section

5. The next section discusses duality transformations which interchange chiral for twisted

chiral fields and vice-versa. In addition we also briefly discuss the duality between a pair

consisting of a chiral and a twisted chiral superfield and a semi-chiral multiplet. We end

with conclusions and an outlook. Our conventions are summarized in the appendix.
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2. From N = (1, 1) to N = 1

In the absence of boundaries a non-linear σ-model (with N ≤ (1, 1)) on some d-dimensional

target manifold M is characterized by a metric gab(X) and a closed 3-form Tabc(X) (the

latter is known as the torsion, the Kalb-Ramond 3-form or the NS-NS form) on M where

Xa are local coordinates on M and a, b, c, . . . ∈ {1, . . . , d}. The action in N = (1, 1)

superspace is simply,1

S = 8

∫

d2σ d2θD+X
aD−X

b (gab + bab) , (2.1)

where we used a locally defined 2-form potential bab(X) = −bba(X) for the torsion,

Tabc = −3

2
∂[abbc]. (2.2)

We consider a boundary at σ = 0 ( σ ≥ 0 ) and θ+ = θ−. This breaks the invariance

under translations in both the σ and the θ′ ≡ θ+−θ− direction thus reducing the N = (1, 1)

supersymmetry to an N = 1 supersymmetry. We introduce the derivatives,

D ≡ D+ +D−, D′ ≡ D+ −D−, (2.3)

which satisfy,

D2 = D′2 = − i

2
∂τ , {D,D′} = −i ∂σ, (2.4)

and,

D+D− = −1

2
DD′ − i

4
∂σ. (2.5)

The action,

S = −4

∫

d2σ dθD′
(

D+X
aD−X

b (gab + bab)
)

, (2.6)

is manifestly invariant under the surviving N = 1 supersymmetry and — because of

eq. (2.5) – differs from the action in eq. (2.1) by a boundary term [21, 18]. Upon per-

forming the D′ derivative one gets the action in N = 1 boundary superspace previously

obtained in [18],

S =

∫

d2σ dθ

(

i gabDX
a∂τX

b − 2i gab ∂σX
aD′Xb + 2i bab ∂σX

aDXb (2.7)

−2 gabD
′Xa∇D′Xb + 2TabcD

′XaDXbDXc − 2

3
TabcD

′XaD′XbD′Xc

)

,

where,

∇D′Xa ≡ DD′Xa + { abc}DXbD′Xc. (2.8)

1Our conventions are given in appendix A. Note that we have rescaled the scalar fields with a factor√
2πα′ in order to make them dimensionless.

– 3 –



J
H
E
P
1
0
(
2
0
0
8
)
1
0
8

Both Xa and D′Xa are now independent N = 1 superfields. Adding a boundary term Sb
to the action eq. (2.7),

Sb = 2i

∫

dτ dθ AaDX
a, (2.9)

is equivalent to the modification bab → Fab = bab+Fab with Fab = ∂aAb−∂bAa in eq. (2.7).

Varying the action eq. (2.6)2 or eq. (2.7) yields a boundary term,

δS
∣

∣

boundary
= −2i

∫

dτdθ δXa
(

gabD
′Xb − babDX

b
)

, (2.10)

which will only vanish upon imposing suitable boundary conditions. In order to do this

we introduce an almost product structure, a (1,1) tensor R(X)ab [11, 15, 16, 18], which

satisfies,

RacR
c
b = δab , (2.11)

and projection operators P±,

Pa
±b ≡

1

2
(δab ±Rab) . (2.12)

With this we impose Dirichlet boundary conditions,

Pa
−b δX

b = 0. (2.13)

Using eq. (2.13), one verifies that the boundary term eq. (2.10) vanishes, provided one

imposes in addition the Neumann boundary conditions,

P+baD
′Xb = Pb

+a bbcDX
c. (2.14)

If in addition we have that Rab = Rba with Rab = gacR
c
b, then we can rewrite the Neumann

boundary conditions as,

Pa
+bD

′Xb = Pa
+cb

c
dPd

+bDX
b, (2.15)

and P+ and P− resp. project onto Neumann and Dirichlet directions resp. Note that as

was discussed in [19] this is not necessary.

Invariance of the Dirichlet boundary conditions under what remains of the super-

Poincaré transformations implies that on the boundary,

Pa
−bDX

b = Pa
−b ∂τX

b = 0, (2.16)

hold as well. Using D2 = −i/2 ∂τ , we get from eq. (2.16) the integrability conditions,3

0 = Pd
+[bPe

+c]Pa
+d,e = − 1

2
Pa
−eN e

bc[R,R]. (2.17)

2Here one uses that
R

d2σdθD′ D± = −(i/2)
R

dτdθ.
3Out of two (1, 1) tensors Ra

b and Sa
b, one constructs a (1, 2) tensor N [R, S]abc, the Nijenhuis tensor,

as N [R, S]abc = Ra
dSd

[b,c] + Rd
[bS

a
c],d + R ↔ S.
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These conditions guarantee the existence of adapted coordinates X â, â ∈ {p + 1, . . . , d},
with p ≤ d the rank of P+ such that the Dirichlet boundary conditions, eq. (2.13) are

simply given by,

X â = constant, ∀ â ∈ {p+ 1, . . . , d}. (2.18)

Writing the remainder of the coordinates as X ǎ, ǎ ∈ {1, . . . , p}, we get the Neumann

boundary conditions, eq. (2.14), in our adapted coordinates,

gǎbD
′Xb = bǎb̌DX

b̌, (2.19)

where b is summed from 1 to d and we used that DX b̂ vanishes on the boundary. Conclud-

ing, the action eq. (2.6) together with the boundary conditions eqs. (2.18) and (2.19), de-

scribe open strings in the presence of a Dp-brane whose position is determined by eq. (2.18).

3. N=2 superspace

3.1 N = (2, 2) supersymmetry in the absence of boundaries

Already in the absence of boundaries, promoting the N = (1, 1) supersymmetry of the

action in eq. (2.1) to an N = (2, 2) supersymmetry introduces additional structure. The

most general extra supersymmetry transformations — consistent with dimensions and su-

per Poincaré symmetry — are of the form,

δXa = ε+ Ja+b(X)D+X
b + ε− Ja−b(X)D−X

b, (3.1)

which implies the introduction of two (1,1) tensors J+ and J−. On-shell closure of the

algebra requires both J+ and J− to be complex structures,

Ja±c J
c
±b = −δab ,

N [J±, J±]abc = 0, (3.2)

while invariance of the action necessitates that the metric is hermitian with respect to both

complex structures,4

Jc±a J
d
±b gcd = gab , (3.3)

and that both complex structures have to be covariantly constant,

0 = ∇±
c J

a
±b ≡ ∂c J

a
±b + Γa±dcJ

d
±b − Γd±bcJ

a
±d , (3.4)

with the connections Γ± given by,

Γa±bc ≡ { abc} ± T abc . (3.5)

4This implies the existence of two two-forms ω±

ab = −ω±

ba = gacJ
c
±b. In general they are not closed.

Using eq. (3.4), one shows that ω±

[ab,c] = ∓2Jd
±[aTbc]d = ∓(2/3)Jd

±aJe
±bJ

f
±cTdef , where for the last step we

used the fact that the Nijenhuis tensors vanish.
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The targetmanifold geometry (M, g, J±, T ) consists of a bihermitian manifold (the manifold

has two complex structures for both of which the metric is hermitian) and both complex

structures are covariantly constant with respect to different connections which are given

in eq. (3.5). When the torsion vanishes, this type of geometry reduces to the usual Kähler

geometry.

An interesting observation is that all terms in the algebra which do not close off-

shell are proportional to the commutator of the complex structures [J+, J−] suggesting

that extra auxiliary fields will be needed in the direction of coker[J+, J−]. A detailed

analysis revealed the following picture (suggested in [8, 9] and [7] and shown to be correct

in [5]): writing ker [J+, J−] = ker(J+ −J−)⊕ker(J+ +J−), one gets that ker(J+ −J−) and

ker(J+ +J−) resp. can be integrated to chiral and twisted chiral multiplets resp. [2]. Semi-

chiral multiplets [6] are required for the description of coker[J+, J−]. The Lagrange density

is a real function of these superfields. Metric, torsion and the complex structures can all be

expressed in terms of this function. When only chiral and twisted chiral fields are present

the relations are all linear while once semi-chiral fields are present as well non-linearities

appear. This clearly shows that this geometry generalizes Kähler geometry: the whole

local geometry is encoded in a single real function which generalizes the Kähler potential.

As a consequence such geometries are often called generalized Kähler geometries.5

In the present paper we will focus on chiral and twisted chiral multiplets, i.e. we assume

that J+ and J− commute.6 These fields in N = (2, 2) superspace (once more we refer to

the appendix for conventions) satisfy the constraints D̂±Xa = Ja±bD±Xb where J+ and

J− can be simultaneously diagonalized. When the eigenvalues of J+ and J− have the same

(the opposite) sign we have chiral (twisted chiral) superfields. Explicitly, we get that chiral

superfields Xα, α ∈ {1, . . . ,m}, satisfy,

D̂±X
α = +iD±X

α, D̂±X
ᾱ = −iD±X

ᾱ. (3.6)

Twisted chiral superfields Xµ, µ ∈ {1, . . . , n} satisfy,

D̂±X
µ = ±iD±X

µ, D̂±X
µ̄ = ∓iD±X

µ̄. (3.7)

The most general action involving these superfields is given by,

S = 4

∫

d2σ d2θ d2θ̂ V (X, X̄), (3.8)

where the Lagrange density V (X, X̄) is an arbitrary real function of the chiral and twisted

chiral superfields. It is only defined modulo a generalized Kähler transformation,

V → V + F + F̄ +G+ Ḡ, (3.9)

with,

∂ᾱF = ∂µ̄F = 0, ∂ᾱG = ∂µG = 0. (3.10)

5This can be made very concrete in the framework of Hitchin’s generalized complex geometry, see

e.g. [22 – 24] and references therein.
6As already mentioned in the introduction we relegate the study of the most general case — which

includes the semi-chiral superfields — to a forthcoming paper [20].
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Passing to N = (1, 1) superspace and comparing the result to eq. (2.1), allows one to

identify the metric and the torsion potential,7

gαβ̄ = +Vαβ̄, gµν̄ = −Vµν̄ ,
bαν̄ = −Vαν̄ , bµβ̄ = +Vµβ̄, (3.11)

where all other components of g and b vanish. When writing Vαβ̄ , we mean ∂α∂β̄V etc.

Let us end with two remarks. Interchanging the chiral with the twisted chiral superfields

and vice-versa while sending V → −V , leaves the bulk geometry unchanged. Finally, when

only one type of superfield is present, the geometry is Kähler.

3.2 From N = (2, 2) to N = 2

We introduce a boundary in N = (2, 2) superspace which breaks half of the supersymme-

tries, reducing N = (2, 2) to N = 2. We have either B-type boundary conditions where the

boundary is given by θ′ ≡ (θ+ − θ−)/2 = 0 and θ̂′ ≡ (θ̂+ − θ̂−)/2 = 0 or A-type boundary

conditions where the boundary is given by θ′ ≡ (θ+ − θ−)/2 = 0 and θ̂′ ≡ (θ̂+ + θ̂−)/2 = 0.

Throughout this paper we will always use B-type boundary conditions as switching to A-

type boundary conditions merely amounts to interchanging chiral fields for twisted chiral

fields and vice-versa [19].

We define the derivatives,

D ≡ D+ +D−, D̂ ≡ D̂+ + D̂−,

D′ ≡ D+ −D−, D̂′ ≡ D̂+ − D̂−, (3.12)

where unaccented derivatives refer to translations in the invariant directions. They satisfy,

D2 = D̂2 = D′2 = D̂′2 = − i

2
∂τ ,

{D,D′} = {D̂, D̂′} = −i∂σ , (3.13)

with all other anti-commutators zero.

Let us now turn to the superfields. In the bulk we had chiral and twisted chiral

superfields. From eqs. (3.6) and (3.12) we get for the chiral fields,

D̂Xα = +iDXα, D̂Xᾱ = −iDXᾱ,

D̂′Xα = +iD′Xα, D̂′Xᾱ = −iD′Xᾱ, (3.14)

where α, ᾱ ∈ {1, . . . ,m}. This can also be written as,8

D̄Xα = D̄
′Xα = DXᾱ = D

′Xᾱ = 0. (3.15)

7Indices from the beginning of the Greek alphabet, α, β, γ, . . . denote chiral fields while indices from

the middle of the alphabet, µ, ν, ρ, . . . denote twisted chiral fields.
8For our conventions we refer once more to the appendix.
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Passing from N = (2, 2) — parameterized by the Grassmann coordinates θ, θ̂, θ′ and θ̂′ —

to N = 2 superspace – parameterized by θ and θ̂ — we get Xα, Xᾱ, D′Xα and D′Xᾱ as

N = 2 superfields which satisfy the constraints,

D̂Xα = +iDXα, D̂Xᾱ = −iDXᾱ,

D̂ D′Xα = +iDD′Xα − ∂σX
α, D̂ D′Xᾱ = −iDD′Xᾱ + ∂σX

ᾱ. (3.16)

For twisted chiral superfields we get instead, when combining eqs. (3.7) and (3.12),

D̂Xµ = +iD′Xµ, D̂X µ̄ = −iD′X µ̄,

D̂′Xµ = +iDXµ, D̂′X µ̄ = −iDX µ̄, (3.17)

with µ, µ̄ ∈ {1, . . . , n}. For further convenience we can also write this as,

D
′Xµ = DXµ, D̄

′Xµ = −D̄Xµ,

D
′X µ̄ = −DX µ̄, D̄

′X µ̄ = D̄X µ̄. (3.18)

Passing again from N = (2, 2) to N = 2 superspace, we now get Xµ, X µ̄, D′Xµ and D′X µ̄

as N = 2 superfields satisfying the constraints,

D̂Xµ = +iD′Xµ, D̂X µ̄ = −iD′X µ̄,

D̂ D′Xµ = −1

2
Ẋµ, D̂ D′X µ̄ = +

1

2
Ẋ µ̄. (3.19)

Note that in N = 2 boundary superspace, the twisted chiral superfields Xµ and X µ̄ are

unconstrained superfields — the fermionic fields D′X are nothing else but the image of

these fields under the second supersymmetry — while the chiral fields can be viewed as a

1-d analogue of chiral fields.

Once more one immediately verifies that the difference between the fermionic measure

D+D−D̂+D̂− and DD̂D′D̂′ is just a boundary term. So the most general N = 2 invariant

action which reduces to the usual action away from the boundary that we can write down

is,

S = −
∫

d2σ dθdθ̂ D′D̂′ V (X, X̄) + i

∫

dτ dθdθ̂W (X, X̄)

= −
∫

d2σ d2θD′D̂′ V (X, X̄) + i

∫

dτ d2θW (X, X̄), (3.20)

with V (X, X̄) and W (X, X̄) real functions of the chiral and the twisted chiral superfields.

While the generalized Kähler potential V is arbitrary, this is not so for the boundary

potential W . Whenever W is a function of the twisted chiral fields as well, its form will be

(partially) determined by the boundary conditions as we will see later on.

4. Non-linear σ-models

4.1 The action

We start with a set of chiral superfields Xα, α ∈ {1, . . . m}, and a set of twisted chiral

superfields Xµ, µ ∈ {1, . . . , n}. The action is given by eq. (3.20). Working out the D̂′ and

– 8 –
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D′ derivatives we obtain the action in N = 2 superspace,9

S =

∫

d2σ d2θ
{

+ 2i Vαβ̄D
′XαD′X β̄ − 2i Vαβ̄DX

αDX β̄ + 2i Vµν̄DX
µD′X ν̄

+2i Vµν̄D
′XµDX ν̄ − Vµ∂σX

µ + Vµ̄∂σX
µ̄ − Vα∂σX

α + Vᾱ∂σX
ᾱ

+2i Vαβ̄D
′XαDX β̄ + 2i Vαβ̄DX

αD′X β̄ + 2i Vαν̄D
′XαD′X ν̄

+2i Vµβ̄D
′XµD′X β̄ + 2i Vµβ̄DX

µD′X β̄ + 2i Vαν̄D
′XαDX ν̄

}

+i

∫

dτ d2θW (X, X̄). (4.1)

When reducing the action to N = 1 superspace, one recovers the action in eq. (2.7) with

metric and torsion given by eq. (3.11). However the resulting action has a boundary term

as well,

Sboundary = −i
∫

dτ dθ
(

(

Vα − iWα

)

DXα +
(

Vᾱ + iWᾱ

)

DXᾱ +

+
(

Vµ − iWµ

)

D′Xµ +
(

Vµ̄ + iWµ̄

)

D′X µ̄
)

. (4.2)

Note that this boundary term — because of the presence of D′X terms – does not have

the standard form (compare to eq. (2.9)). A judicious choice of boundary conditions will

allow us to reduce it to the form in eq. (2.9).

The action is still invariant under the generalized Kähler transformations, eqs. (3.9)

and (3.10), provided the boundary potential W transforms as well,

W → W − i
(

F − F̄
)

+ i
(

G− Ḡ
)

. (4.3)

Invariance under generalized Kähler transformations is essential for the global consistency

of the models. Let us illustrate this with a simple example — more and less trivial examples

will follow later in the paper – of a D1-brane on a two-torus T 2. The torus is characterized

by its modulus τ which takes its value in the upper half-plane H. We parametrize the torus

by a twisted chiral field w = (x + τy)/
√

2 with x, y ∈ R, such that the metric is simply

gww̄ = 1. The periodicity condition is,

w ≃ w +
1√
2

(

n1 + n2 τ
)

, (4.4)

with n1, n2 ∈ Z. We impose the Dirichlet boundary condition,

(

1 +m τ̄
)

w =
(

1 +mτ
)

w̄, (4.5)

with m ∈ Z. Because of eq. (3.19) this implies a Neumann boundary condition as well,

(

1 +m τ̄
)

D′w +
(

1 +mτ
)

D′w̄ = 0, (4.6)

and we end up with a D1-brane winding once in the x direction and m times in the y

direction. The Kähler potential is V = −ww̄ and with the boundary condition eq. (4.5)

9When comparing this to the Kähler case discussed in [19], note that when no twisted chiral fields are

present,
R

d2σd2θVα∂σXα = −2i
R

d2σd2θVᾱβDXᾱD′Xβ holds.
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one finds10 that the boundary potential vanishes, W = 0. Because of the presence of a

D1-brane, the invariance eq. (4.4) is partially broken and we get from eq. (4.5) that,

n2 = mn1, (4.7)

should hold. Under eqs. (4.4) and (4.7), the Kähler potential transforms as,

V → V − n1√
2

(

1 +m τ̄
)

w − n1√
2

(

1 +mτ
)

w̄. (4.8)

Making a Kähler transformation restores the invariance but generates – because of eq. (4.3)

— a boundary potential,

W = 0 →W = − i n1√
2

((

1 +m τ̄
)

w −
(

1 +mτ
)

w̄
)

, (4.9)

which vanishes because of the boundary condition eq. (4.5). So the description is indeed

globally consistent.

Finally note that the action eq. (3.20) is also invariant under,

W → W +H + H̄, (4.10)

where,

∂ᾱH = ∂µH = ∂µ̄H = 0, ∂αH̄ = ∂µH̄ = ∂µ̄H̄ = 0. (4.11)

We will often tacitly use the fact that the boundary potential is only defined modulo

an additive contribution of a holomorphic (and its complex conjugate) function of the

boundary chiral fields.

When varying the action, one needs to take into account that the superfields are

constrained. Besides Xµ and X µ̄ we introduce unconstrained superfields Λα, Λᾱ, Mα and

M ᾱ and solve the constraints by,

Xα = D̄Λα, Xᾱ = DΛᾱ,

D′Xα = D̄Mα − ∂σΛ
α, D′Xᾱ = DM ᾱ + ∂σΛ

ᾱ,

D′Xµ = −i D̂Xµ, D′X µ̄ = +iD̂X µ̄. (4.12)

Varying the unconstrained fields in the action eq. (4.1) yields the usual equations of motion

with metric and Kalb-Ramond two-form given by eq. (3.11) and a boundary term given

by,

δS
∣

∣

∣

boundary
=

∫

dτ d2θ
{

δΛα
(

D̄
′Vα + i D̄Wα

)

− δΛᾱ
(

D
′Vᾱ − iDWᾱ

)

+

−δXµ
(

Vµ − iWµ

)

+ δX µ̄
(

Vµ̄ + iWµ̄

)

}

. (4.13)

This should vanish by imposing appropriate boundary conditions on the fields.

10One can use the results in [19] or require that eq. (4.13) vanishes.
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4.2 Boundary conditions

4.2.1 General considerations

We will impose Dirichlet boundary conditions using an almost product structure as was

introduced in section 2. We start with the unconstrained superfields Λ. The most gen-

eral Dirichlet boundary conditions which are consistent with the dimensions of the fields

involved are given by,

δΛα = R(X)αβδΛ
β +R(X)αβ̄δΛ

β̄ , (4.14)

which already implies that,

Rαµ = Rαµ̄ = 0. (4.15)

As D̄δΛβ̄ should not appear in the boundary condition for Xα we necessarily have that,

Rαβ̄ = 0. (4.16)

Eq. (4.14) implies,

δXα = Rαβ δX
β , (4.17)

if,

Rαδ,ǭPδ
+βP ǭ

+γ̄ +Rαδ,µPδ
+βPµ

+γ̄ +Rαδ,µ̄Pδ
+βP µ̄

+γ̄ = 0,

Rαδ,νPδ
+βPν

+µ +Rαδ,ν̄Pδ
+βP ν̄

+µ = 0,

Rαδ,νPδ
+βPν

+µ̄ +Rαδ,ν̄Pδ
+βP ν̄

+µ̄ = 0, (4.18)

holds. Furthermore, eq. (4.17) implies DXα = RαβDX
β , D̂Xα = Rαβ D̂X

β and Ẋα =

Rαβ Ẋ
β as well. Consistency of this with D2 = D̂2 = −(i/2)∂τ results in the integrability

condition,

Rαδ,ǫP+
δ
[β P+

ǫ
γ] = 0. (4.19)

Eqs. (4.18) and (4.19) together form the integrability conditions (2.17) for a = α and thus

guarantee the existence of a holomorphic coordinate transformation which brings us to

coordinates Xα̂, α̂ ∈ {k + 1, . . . m} where 2k is the rank of P+ (in the chiral directions),

such that part of the Dirichlet boundary conditions are given by,

Xα̂ = constant, (4.20)

with Xα̂ chiral. We will denote the remainder of the chiral coordinates by Xα̃, α̃ ∈
{1, . . . , k}. In these coordinates we have that,

Rα̂β̃ = 0, Rα̃β̃ = δα̃
β̃
, (4.21)

and,

Rα̂γ̂R
γ̂
β̂ = δα̂

β̂
, Rα̃γ̂R

γ̂
β̂ = −Rα̃β̂. (4.22)
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For the time being however, we only require the chiral fields to obey (4.17), without going

to these adapted coordinates.

We now turn to the Dirichlet boundary conditions for the twisted chiral superfields.

The most general expression we can write down is,

δXµ = Rµν δX
ν +Rµν̄ δX

ν̄ +Rµβ δX
β +Rµβ̄ δX

β̄ . (4.23)

Using eqs. (3.19) and (3.16), we get from this,11

(

P+D
′X
)µ

= Rµν D
′Xν +

1

2
Rµβ

(

D′Xβ +DXβ
)

+
1

2
Rµβ̄

(

D′X β̄ −DX β̄
)

. (4.24)

This is consistent with P2
+ = P+ if,

RµρR
ρ
ν = Rµν ,

RµρR
ρ
ν̄ = Rµρ̄R

ρ̄
ν̄ = 0, (4.25)

and

Rµβ = RµνR
ν
β −Rµν̄R

ν̄
β ,

Rµβ̄ = RµνR
ν
β̄ −Rµν̄R

ν̄
β̄ . (4.26)

Using the defining property of an almost product structure – RacR
c
b = Rab — and

eqs. (4.15) and (4.25), one finds that both πµ+ν ≡ Rµν and πµ−ν ≡ δµν − Rµν = Rµρ̄R
ρ̄
ν

are projection operators mapping T
(1,0)
M to T

(1,0)
M . In terms of these projection operators

eqs. (4.26) can be rewritten more suggestively as,

Rµβ =
(

πµ−ν − πµ+ν
)

RναR
α
β ,

Rµβ̄ =
(

πµ−ν − πµ+ν
)

RνᾱR
ᾱ
β̄ . (4.27)

In the π− directions these relations are trivially satisfied in chiral directions along the

brane, as follows from (4.17) or (4.21), and hence have no consequences for the Dirichlet

conditions (4.23). In the π+ directions, however, they imply,

πµ+νR
ν
βδX

β = πµ+νR
ν
β̄δX

β̄ = 0, (4.28)

or

πµ+νR
ν
β̃ = πµ+νR

ν
¯̃β

= 0. (4.29)

This implies that there are no Dirichlet conditions in the π+ directions, as can be seen by

acting with π+ on both sides of eq. (4.23). This is made manifest by writing the Dirichlet

boundary conditions eq. (4.23) as

πµ−νδX
ν = Rµν̄ δX

ν̄ +Rµβ̃ δX
β̃ +Rµ ¯̃β

δX
¯̃β . (4.30)

11Note that the contributions from DXα̂ (and its complex conjugate) to this expression actually vanish

because of (4.17), but the ones from D′Xα̂ (and its complex conjugate )do not.
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The corresponding Neumann boundary conditions are then,

πµ−νD
′Xν = −Rµν̄ D′X ν̄ +Rµβ̃DX

β̃ −Rµ ¯̃β
DX

¯̃
β . (4.31)

We need to impose separate Neumann boundary conditions on πµ+νD
′Xν . In the π+ direc-

tions (4.24) can be written as,

πµ+ν
(

P+D
′X
)ν

= Rµν

(

D′Xν +
1

2
Rν β̂D

′X β̂ +
1

2
Rν ¯̂

β
D′X

¯̂
β

)

, (4.32)

which, comparing to e.g. eq. (2.19), shows that there is a non-degenerate U(1) field strength

in the π+ directions. A similar expression in the π− directions

πµ−ν
(

P+D
′X
)ν

=
1

2
πµ−ν

(

Rνβ
(

D′Xβ +DXβ
)

+Rν β̄
(

D′X β̄ −DX β̄
)

)

, (4.33)

indicates that we can expect a field strength in these directions as well, as long as Rµβ and

Rµβ̄ are non-vanishing.

4.2.2 Detailed analysis

For simplicity, let us first examine the extremal cases π− = 1 and π+ = 1. When π− = 1,

we get an equal amount of Dirichlet and Neumann conditions on the twisted chiral fields.

To make (4.13) vanish, we start by setting,

(V − iW )µR
µ
ν̄ = (V + iW )ν̄ . (4.34)

Using this, one rewrites the Dirichlet conditions eq. (4.30) as,

(V − iW )µ

(

δXµ −RµβδX
β
)

= (V + iW )µ̄

(

δX µ̄ −Rµ̄β̄δX
β̄
)

, (4.35)

which also implies Rµβ = −Rµν̄Rν̄β or,

(V − iW )µR
µ
β = −(V + iW )µ̄R

µ̄
β. (4.36)

Compatibility of eq. (4.35) with D2 ∝ ∂τ results in the extra condition

Rµν = Rνµ, (4.37)

along with the conditions which insure integrability of P+, eq. (2.17), already known from

the N = 1 superspace analysis. The Dirichlet conditions (4.35) again automatically imply

the Neumann conditions

(V − iW )µ

(

D′Xµ −RµβDX
β
)

+ (V + iW )µ̄

(

D′X µ̄ −Rµ̄β̄DX
β̄
)

= 0. (4.38)

Using these equations to simplify the N = 1 boundary term (4.2) and comparing the result

with (2.9) yields a U(1) connection with components

Aα̃ = −1

2
[(V − iW )α̃ + (V − iW )µR

µ
α̃] ,

A ¯̃α = −1

2

[

(V + iW ) ¯̃α + (V + iW )µ̄R
µ̄

¯̃α

]

, (4.39)

Aµ = Aµ̄ = 0,
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up to gauge transformations. Using (4.35) in (4.13) yields,

δS
∣

∣

∣

boundary
=

∫

dτ d2θ
{

δΛα
[

D̄
′Vα − D̄

(

(V − iW )µR
µ
α − iWα

)

]

−δΛᾱ
[

D
′Vᾱ − D

(

(V + iW )µ̄R
µ̄
ᾱ + iWᾱ

)

]}

. (4.40)

This leads to the Neumann conditions

D̄
′Vα̃ = D̄

(

(V − iW )µR
µ
α̃ − iWα̃

)

,

D
′V ¯̃α = D

(

(V + iW )µ̄R
µ̄

¯̃α + iW ¯̃α

)

. (4.41)

Eqs. (4.41) together with (4.20), (4.35) and (4.38), describe a (2k + n)-dimensional brane,

where k is the number of chiral fields along the brane and n is the number of twisted

chiral fields. In principle, it should be possible to demonstrate that (4.38) and (4.41) are

precisely of the general form (2.19). This however requires the introduction of worldvolume

coordinates (which solve eqs. (4.35)). We will not show this in full generality here, but will

illustrate this point for some examples in section 5.

Let us now turn to the case π+ = 1. As mentioned before, in this case all boundary

conditions on the twisted chiral fields are necessarily Neumann. Because of the presence

of a U(1) field strength F — as implied by (4.32) — we expect a condition of the form

D′Xk = F klDX
l + (F ka + bka)DX

a. (4.42)

Here, Latin indices from the beginning of the alphabet indicate (both holomorphic and anti-

holomorphic) chiral directions and Latin indices from the middle of the alphabet indicate

twisted chiral directions. Note that we have taken into account the non-trivial b-field back-

ground (3.11). Writing the N = 2 relations as D̂Xa = JabDX
b and D̂Xm = JmnD

′Xn,

we find that eq. (4.42) implies,12

D̂Xk = Kk
lDX

l + LkaDX
a, (4.43)

where Kk
l = JkmF

m
l and Lka = Jkm(Fma + bma). This means that on the boundary the

twisted chiral fields become constrained superfields. Consistency of these constraints with

D̂2 = D2 ∝ ∂τ , implies that K is a(n integrable) complex structure on the space spanned

by the twisted chiral fields, while L should satisfy one set of algebraic relations,

Kk
lL
l
a = −LkbJba, (4.44)

and two sets of relations involving derivatives,

0 = Kk
mK

m
l,a −Kk

mL
m
a,l +Km

lL
k
a,m − LmaK

k
l,m − JbaK

k
l,b,

0 = Kk
lL
l
[a,b] + Ll[aL

k
b],l + Jc[aL

k
b],c. (4.45)

12Notice that components Lk
â will always be zero, since there is no magnetic field in these directions.

This is however implicit in all subsequent formulae, because in the end DX â will be zero as well by virtue

of the Dirichlet conditions in the chiral directions.
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This can be interpreted as follows. We can combine the constraints on the chiral fields and

eq. (4.43) in a straightforward way to the following constraint on the boundary,

D̂

(

Xa

Xk

)

=

(

Jab 0

Lkb K
k
l

)

D

(

Xb

X l

)

. (4.46)

The above conditions on K and L are then nothing but the statement that the matrix

K =

(

J 0

L K

)

(4.47)

represents a complex structure, K2 = −1 and NM
NK(K,K) = 0. Here we introduced

indices M, N, . . . which run over both chiral Neumann directions and twisted chiral direc-

tions. In terms of these, we can thus write

D̂XM = KM
NDX

N . (4.48)

Because of (4.48), the XM are not all independent. In order to deal with this when

considering the boundary term in variation of the action, these constraints are again solved

by introducing fermionic superfields Λ̃M such that

δXM =
∂XM

∂X̃N

(

D̂δΛ̃N − K̃N
PDδΛ̃

P
)

, (4.49)

where X̃ are coordinates with respect to which K̃ is constant.13 Note that the chiral

component of (4.49) is nothing but

δXa = D̂δΛa − JabDδΛ
b, (4.50)

where (because both Jab and J̃ab are constant)

δΛa =
∂Xa

∂X̃M
δΛ̃M . (4.51)

This shows that the δΛa are exactly the unconstrained superfields needed to obtain (4.13),

so that this construction is consistent with previously obtained expressions. We now write

the second line of (4.13) as,

i

∫

dτ d2θMkδX
k = i

∫

dτ d2θ (MNδX
N −MaδX

a), (4.52)

where we introduced MN = WN + VMJ
M
N . A calculation formally identical to the one

leading to eq. (4.42) of [19] then yields

i

∫

dτ d2θMNδX
N = i

∫

dτ d2θ δΛMDXN
(

MM,PKP
N −MP,NKP

M + 2MPKP
[N,M ]

)

,

13Note that the coordinates X̃ need not separate nicely into a set of chiral and a set of twisted chiral

superfields. In the end, the boundary term in the variation will again be expressed in terms of the coordinates

X ã and Xk.
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where we used (4.49) and we introduced the notation

δΛM =
∂XM

∂X̃N
δΛ̃N . (4.53)

The second term of (4.52) is easier to work out in a similar way using (4.50). Putting

all pieces together, one arrives at the following expression for the boundary term in the

variation of the action (4.13):

δS
∣

∣

∣

boundary
= IA + IB, (4.54)

where

IA = −i
∫

dτ d2θ δΛa
(

D̂′VbJ
b
a +D′Va − D̂Wa +DWbJ

b
a +DMkL

k
a

)

−i
∫

dτ d2θ δΛa
(

2MkL
k
[a,b]DX

b +MlL
l
a,kDX

k −MlK
l
k,aDX

k
)

, (4.55)

and

IB = i

∫

dτ d2θ δΛk
(

D̂Mk −DMlK
l
k

)

+

i

∫

dτ d2θ δΛk
(

2MmK
m

[l,k]DX
l +MlL

l
a,kDX

a −MlK
l
k,aDX

a
)

. (4.56)

The first term IA disappears when imposing Dirichlet conditions,

δΛâ = 0, (4.57)

and Neumann conditions,

0 = D̂′Vb̃J
b̃
ã +D′Vã − D̂Wã +DWb̃J

b̃
ã +DMkL

k
ã

+2MkL
k
[ã,b̃]DX

b̃ +Ml(L
l
ã,k −K l

k,ã)DX
k. (4.58)

The second term IB vanishes if we impose

0 = Mk,mK
m
l −Mm,lK

m
k + 2MmK

m
[l,k], (4.59)

0 = Mk,b̃J
b̃
ã −Ml,ãK

l
k +Mk,lL

l
ã +MlL

l
ã,k −MlK

l
k,ã. (4.60)

Using the fact that

Fkl = −gkm(JK)ml, (4.61)

and the boundary condition (4.59), we find that Fkl = ∂kAl − ∂lAk, where

Ak =
1

2
MlK

l
k + ∂kf, (4.62)

with f an arbitrary real function. This shows that the U(1) gauge fields in the twisted

chiral directions are unaltered with respect to the case where only twisted chiral fields are

present [19]. On the other hand, we have that

Fkã = −gkl(JL)lã − bkã, (4.63)
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where, again, the b-field is given by (3.11). This together with (4.60) implies that Fkã =

∂kAã − ∂ãAk, where Ak is again given by (4.62) and Aã can be written as,

Aã =
1

2
MkL

k
ã +

1

2
Mb̃J

b̃
ã + ∂ãf. (4.64)

Eqs. (4.62) and (4.64) can be summarized by using the complex structure K,

(

Aã Ak

)

= −1

2

(

Mb̃ Ml

)

(

J b̃ã 0

Llã K
l
k

)

+
(

∂ã ∂k

)

f , (4.65)

or,

AM =
1

2
MNKN

M + ∂Mf. (4.66)

In terms of the field strength derived from (4.66), the Neumann boundary conditions (4.58)

can be rewritten as

gãbD
′Xb = Fãb̃DX

b̃ + (Fãk + bãk)DX
k, (4.67)

i.e. precisely of the general form (2.19). The non-standard boundary term (4.2) can on the

other hand be rewritten as

Sboundary = i

∫

dτ dθMN D̂X
N = 2i

∫

dτ dθ ANDX
N , (4.68)

where the last expression is obtained by using (4.48) and (4.66). This is precisely of the

standard form (2.9).

Because of (4.61), both Fkl and ωkl = gkmJ
m
l — which is anti-symmetric because the

metric is hermitian with respect to J , but is not closed when H = db is non-trivial —

are non-degenerate (2, 0) + (0, 2) forms with respect to K. This implies that the part of

the target space spanned by the twisted chiral superfields is 4l-dimensional (with l ∈ N

and n = 2l the number of twisted chiral superfields). We conclude that eqs. (4.42), (4.57)

and (4.58) describe a 2(2l+ k)-dimensional brane on a 2(2l+m)-dimensional target space.

Note that when no chiral fields are present — m = k = 0 — we recover the maximally

coisotropic boundary conditions discussed in [19]. We will therefore henceforth refer to this

type of boundary conditions as generalized coisotropic.

For a complete classification of D-branes on bihermitian geometries with two commut-

ing complex structures, it remains to discuss the more general setting where both π+ and

π− are nonzero. Note however that — since there will be 4l π+-directions — the lowest-

dimensional example of such a brane requires a six-dimensional target space, parameterized

by twisted chiral fields exclusively. This case was already considered in [19]. An example

involving chiral fields as well, will necessarily require a target space of eight dimensions or

higher and will thus be physically less relevant. Because in a discussion of the more general

case the expressions would become far more complicated, we therefore only briefly outline

how more general boundary conditions can be obtained.

To this end, we assume the existence of adapted coordinates X µ̌ and X µ̂ (and their

complex conjugates), µ̌, ν̌, . . . ∈ {1, . . . , l} and µ̂, ν̂, . . . ∈ {l + 1, . . . , n}, such that the only
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non-vanishing components of π+ and π− are πµ̂−ν̂ = δµ̂ν̂ and πµ̌+ν̌ = δµ̌ν̌ . With this, eqs. (4.30)

and (4.31) become,

δX µ̂ = Rµ̂ ¯̂ν δX
¯̂ν +Rµ̂β̃ δX

β̃ +Rµ̂ ¯̃β
δX

¯̃
β , (4.69)

D′X µ̂ = −Rµ̂ ¯̂ν D
′X

¯̂ν +Rµ̂β̃DX
β̃ −Rµ̂ ¯̃β

DX
¯̃β, (4.70)

while (4.42) becomes

D′X ǩ = F ǩlDX
l + (F ǩ ã + bǩ ã)DX

ã. (4.71)

Implementation of this in eq. (4.13) then yields the appropriate boundary conditions on

the chiral fields. These will either be of the standard Dirichlet form (4.20) or of a form

which will ultimately be equivalent to the Neumann conditions (2.19). One way to find the

exact form of these Neumann conditions, is to go to worldvolume coordinates on the brane.

These coordinates should be such that eq. (4.69) is trivially satisfied. The field strengths

which should enter in these Neumann conditions, can be obtained by using (4.70) and (4.71)

in (4.2) and comparing the result to the standard form of the N = 1 boundary term (2.9).

In this way a wide variety of branes can be obtained. For example, for an 8-dimensional

target space described by one chiral field and three twisted chiral fields, one obtains D3- and

D5-branes if π− = 1, and D5- and D7-branes when π− 6= 1 (note that in this case π+ cannot

equal 1, because this can only happen when there are an even number of twisted chiral

fields). The D5- and D7-branes occur when generalized coisotropic Neumann conditions

are imposed on two of the twisted chiral fields.

5. Examples

5.1 A four-dimensional target manifold

5.1.1 Generalities

We consider a 4-dimensional target manifold. We can distinguish four different cases.

• It is parameterized in terms of two chiral superfields.

This case was studied in [19]. It describes either a D0-, or a D2- or a D4-brane on a

Kähler manifold wrapping around a holomorphic cycle. It also goes under the name

of a B-brane on a Kähler manifold.

• It is parameterized in terms of two twisted chiral superfields.

This case was also studied in [19]. It describes either a D2-brane wrapped on a

lagrangian submanifold of a Kähler manifold or a maximally coisotropic D4-brane on

a Kähler manifold. These branes also go under the name of A-branes.

• It is parameterized in terms of one chiral and one twisted chiral superfield.

This is the case we will study next. As we will show we can either describe D1- or

D3-branes on a bihermitian manifold with commuting complex structures.
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• It is parameterized in terms of a semi-chiral multiplet.

This case will be studied elsewhere [20]. However we will briefly touch upon it when

discussing duality transformations in section 6. Here it is sufficient to say that this

case corresponds to either a D2- or a D4-brane on a bihermitian geometry where

ker[J+, J−] = ∅.

Let us now focus on the case where one has one chiral superfield z and one twisted

chiral superfield w. The boundary term eq. (4.13) becomes,

δS
∣

∣

∣

boundary
=

∫

dτ d2θ
{

δΛ
(

D̄
′Vz + i D̄Wz

)

− δΛ̄
(

D
′Vz̄ − iDWz̄

)

+

−δw
(

Vw − iWw

)

+ δw̄
(

Vw̄ + iWw̄

)

}

. (5.1)

By choosing appropriate boundary conditions this term should vanish. We have only a

single chiral field which leads us immediately to two subcases: either we impose Dirichlet

boundary conditions in the chiral direction or not. For the twisted chiral superfield we will

always have a Dirichlet and a Neumann boundary condition. So having Dirichlet boundary

conditions in the chiral direction will lead to a D1-brane while Neumann boundary condi-

tions in the chiral direction gives a D3-brane. Instead of dwelling on the general case we

will focus on a few concrete examples which highlight all subtleties.

5.1.2 D3-branes on T 4

We parametrize T 4 by a chiral z and a twisted chiral w coordinate. For simplicity we

choose the torus such that,

z ≃ z +
1√
2

(

Z + iZ
)

, w ≃ w +
1√
2

(

Z + iZ
)

. (5.2)

Note that one easily generalizes the present analysis to an arbitrary point in the moduli

space of T 4. The generalized Kähler potential is simply given by,

V = zz̄ − ww̄. (5.3)

As mentioned here above we can have either D1- or D3-branes. The former is not particu-

larly interesting as by setting z to a constant we end up with a D1-brane wrapping around

a lagrangian submanifold of the 2-torus (a trivial concept in two dimensions) parametrized

by w which was already discussed in [19]. So we turn to the D3-brane and we choose a

simple linear Dirichlet boundary condition,

αw + ᾱ w̄ = β z + β̄ z̄, (5.4)

where α, β ∈ C and α 6= 0. Consistency of this with eq. (5.2) requires that α, β ∈ Z + iZ.

In the language of subsection 4.2, this corresponds to taking

Rzz = 1, Rww̄ = − ᾱ
α
, Rwz =

β

α
, Rwz̄ =

β̄

α
. (5.5)
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Because of eqs. (3.14) and (3.17), eq. (5.4) immediately implies the Neumann boundary

condition,

αD′w − ᾱ D′w̄ = β Dz − β̄ Dz̄. (5.6)

Requiring now that the terms proportional to δw and δw̄ in the boundary term in the

variation of the action, eq. (5.1), vanish yields the boundary potential,

W =
i

2

α

ᾱ
w2 − i

2

ᾱ

α
w̄2 + f(z, z̄), (5.7)

with f(z, z̄) an arbitrary14 real function of z and z̄, and two more Neumann boundary

conditions,

D
′z = − β̄

ᾱ
Dw +

β̄

α
Dw̄ + i fzz̄ Dz,

D̄
′z̄ = +

β

ᾱ
D̄w − β

α
D̄w̄ − i fzz̄ D̄z̄. (5.8)

This is indeed of the general form (4.41) for an almost product structure given by (5.5). So

we end up with a D3-brane whose position is given by eq. (5.4). Using eq. (5.6) in eq. (4.2)

and comparing the result to eq. (2.9) we identify the U(1) gauge fields,

Az =
1

2

(

i fz −
β

ᾱ
w +

β

α
w̄

)

,

Az̄ =
1

2

(

−i fz̄ +
β̄

ᾱ
w − β̄

α
w̄

)

,

Aw = Aw̄ = 0, (5.9)

as anticipated in eqs. (4.39).

As mentioned in subsection 4.2, one can show that when using worldvolume coordi-

nates, the Neumann boundary conditions (5.6) and (5.8) reduce to a more familiar form.

Writing α = m1 + im2 and β = m3 + im4, where mi ∈ Z and assuming m2 6= 0, we

introduce the worldvolume coordinates r, s and t, and write,

z = r + i s, w =

(

1 + i
m1

m2

)

t− i
m3

m2
r + i

m4

m2
s. (5.10)

The non-vanishing components of the pullback of the U(1) fieldstrength are then given by,

Frs = −2
m1

m2

m2
3 +m2

4

m2
1 +m2

2

− 1

2
(frr + fss) , Frt = −2

m4

m2
, Fst = −2

m3

m2
. (5.11)

Since there is no torsion present in this example, the U(1) field strength F and the invariant

two-form F = F+b are equal to each other. Using the above expressions for the components

of F , it is not hard to show that eqs. (5.6) and (5.8) are equivalent to the standard Neumann

boundary conditions (2.19).

14It is clear that this function should obey appropriate periodicity conditions consistent with the global

properties of the torus, i.e. f
`

z + (m + i n)/
√

2, z̄ + (m − i n)/
√

2
´

= f(z, z̄) + h(z) + h̄(z̄) with h(z) an

arbitrary holomorphic function and m, n ∈ Z.
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5.1.3 S3 × S1

Wess-Zumino-Witten models are non-trivial but still relatively simple examples of non-

linear σ-models with N ≥ (2, 2) [25]. The simplest case is the WZW-model on SU(2)×U(1)

(or the Hopf surface S3 × S1) which is the only N = (2, 2) WZW-model which can be

parameterized without the use of semi-chiral superfields. Parameterizing the WZW group

element as,

G =
e−i ln

√
zz̄+ww̄

√
zz̄ + ww̄

(

w z̄

−z w̄

)

, (5.12)

it was found in [26, 27], that the generalized Kähler potential is explicitly given by,

V = −
∫ ww̄/zz̄ dq

q
ln
(

1 + q
)

+
1

2

(

ln z z̄
)2

= +

∫ zz̄/ww̄ dq

q
ln
(

1 + q
)

− 1

2

(

lnw w̄
)2

+ ln(ww̄) ln(zz̄). (5.13)

Note that the equality V (z, z̄, w, w̄) = −V (w, w̄, z, z̄) holds modulo a generalized Kähler

transformation. The potential eq. (5.13) correctly encodes the metric and the torsion of

the group manifold (see eq. (3.11)). Parameterizing SU(2) × U(1) with Hopf coordinates

z = cosψ eρ+iφ1 , w = sinψ eρ+iφ2 , with φ1, φ2, ρ ∈ R mod2π and ψ ∈ [0, π/2], we find that

z, w ∈ (C2 \ 0)/Γ where Γ is generated by (z,w) → (e2π z, e2π w) which is precisely the

definition of a Hopf surface.

We will use the bulk potential,

V = +

∫ zz̄/ww̄ dq

q
ln
(

1 + q
)

− 1

2

(

lnw w̄
)2
, (5.14)

which differs from eq. (5.13) by a generalized Kähler transformation. In addition we have

that global consistency requires invariance under,

z → e2πn z, w → e2πnw, n ∈ Z. (5.15)

Under this the generalized Kähler potential transforms as,

V → V − 4π n ln(ww̄) − 8π2n2, (5.16)

which is a generalized Kähler transformation eq. (3.9). In order to restore the invariance

the boundary potential should transform as well (see eq. (4.3)),

W →W + 4π n i ln
(w

w̄

)

, (5.17)

which should hold modulo the sum of a holomorphic and an anti-holomorphic function of

the chiral fields (see eqs. (4.10-4.11)).
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i. D1-branes. We first study D1-branes. We impose the Dirichlet boundary conditions,

z = z0, z̄ = z̄0,

−i ln w
w̄

= Q′( ln(z0z̄0 + ww̄)
)

, (5.18)

where we parameterized the boundary potential W
(

ln(z0z̄0 + ww̄)
)

as,

W (x) = Q(x) − xQ′(x), (5.19)

where Q′(x) ≡ ∂xQ(x) and x ≡ ln(z0z̄0 + ww̄). Requiring this to be consistent with

eq. (5.17) gives,

Q(x) = f

(

sin

(

x

2

))

+
m

2
x2 + ax, (5.20)

with f(y) ∈ R an arbitrary function and m, a ∈ R. Furthermore requiring that the

periodicity of the left hand side of the last equation in (5.18) is correctly reproduced by

the right hand side forces us to take m ∈ Z. One recognizes the integer m as the winding

number in the φ2 direction, i.e. going once around the circle parameterized by ρ one winds

m times around the circle parameterized by φ2.

ii. D3-branes. We now turn to the D3-brane. We introduce some notation,

x ≡ ln(zz̄ + ww̄), y ≡ −i ln
z

z̄
, (5.21)

and we denote a derivative w.r.t. x by a prime. Parameterizing the boundary potential

W (x, z, z̄) as,

W (x, z, z̄) = Q(x, z, z̄) − xQ′(x, z, z̄) , (5.22)

and imposing a single Dirichlet boundary condition,

−i ln w
w̄

= Q′(x, z, z̄), (5.23)

we get that the terms in eq. (5.1) which are proportional to δw and δw̄ cancel. Using

eq. (5.23) in (5.17) we get that,

W
(

x+ 4πn, e2πnz, e2πnz̄
)

= W (x, z, z̄) − 4πnQ′(x, z, z̄), (5.24)

should hold. Taking once more a derivative of this with respect to x, we find that Q′′(x, z, z̄)
is periodic,

Q′′(x+ 4πn, e2πnz, e2πnz̄
)

= Q′′(x, z, z̄). (5.25)

In principle we could solve this and integrate it toQ while implementing eq. (5.24). However

we will limit ourselves here to a simple choice which satisfies all requirements,

Q =
m1

2
x2 +m2 y

(

x− ln zz̄
)

. (5.26)
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With this the boundary potential becomes,

W = −m1

2
x2 −m2 y ln zz̄, (5.27)

and the Dirichlet boundary condition is explicitly,

−i ln w
w̄

= m1 x+m2 y. (5.28)

As −i lnw/w̄, x and y are all periodic we get that m1, m2 ∈ Z. In the language of

subsection 4.2, this corresponds to Rzz = 1 and,

Rww̄ =
w

w̄

zz̄ + (1 + im1)ww̄

zz̄ + (1 − im1)ww̄
,

Rwz =
w

z

(m2 + im1)zz̄ +m2ww̄

zz̄ + (1 − im1)ww̄
, (5.29)

Rwz̄ = −w
z̄

(m2 − im1)zz̄ +m2ww̄

zz̄ + (1 − im1)ww̄
.

The Dirichlet boundary condition implies a Neumann boundary condition as well,

D
′ lnww̄ = im1 Dx+ im2 Dy. (5.30)

Using eq. (5.28) in the boundary term in the variation of the action, eq. (5.1), one finds

that the remaining terms proportional to δΛ and δΛ̄ vanish provided two more Neumann

boundary conditions are imposed,

D
′z = im1 zDx− m2

z̄
D
(

ww̄
)

,

D̄
′z̄ = −im1 z̄ D̄x− m2

z
D̄
(

ww̄
)

. (5.31)

These are indeed equivalent to (4.41) for an almost product structure given by (5.29), once

the other Neumann condition (5.30) is imposed. Using eq. (5.30) in eq. (4.2) and comparing

it to eq. (2.9) leads to a U(1) bundle with potential fields,

Aw = Aw̄ = 0,

Az = −1

2

(

Vz −m2
x

z

)

, Az̄ = −1

2

(

Vz̄ −m2
x

z̄

)

, (5.32)

again in agreement with eq. (4.39). Introducing world volume coordinates ρ, ψ and φ such

that,

z = cosψ eρ+i φ, w = sinψ e(1+i m1)ρ+im2 φ, (5.33)

we find that the only non-trivial component of the U(1) bundle pullback to the D3-brane

is given by Fρψ = −2
(

cotψ +m2 tanψ
)

. Combining with the NS-NS 2-form pullback to

the D3-brane we obtain the pullback of the invariant 2-form F = b+ F ,

Fρφ = −2m1 cos2 ψ, Fρψ = −2m2 tanψ. (5.34)
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Given this (and the pullback of the metric to the worldvolume), we expect Neumann

boundary conditions of the form (see (2.19)),

(1 +m2
1 sin2 ψ)D′ρ+m1m2 sin2 ψD′φ = −m2 tanψDψ −m1 cos2 ψDφ,

(1 +m2
2 tan2 ψ)D′φ+m1m2 tan2 ψD′ρ = m1Dρ, (5.35)

D′ψ = m2 tanψDρ,

which is indeed equivalent to eqs. (5.30) and (5.31). It would be an instructive exercise to

repeat the analysis of [28] for this particular manifest N = 2 supersymmetric case.

5.2 New space-filling branes on T 6

To illustrate the case π+ = 1 of subsection 4.2, we now discuss the (purely Neumann)

boundary conditions for a space filling brane on T 6 parameterized by one chiral superfield

z and two twisted chiral superfields wµ, µ ∈ {1, 2}, where we impose generalized coisotropic

boundary conditions on the twisted chiral fields. Consider the potential

V = zz̄ − w1w̄1 − w2w̄2 + b1(zw̄
1 + z̄w1) + b2(zw̄

2 + z̄w2), (5.36)

with constant bµ ∈ R, µ ∈ {1, 2}, so that according to (3.11) the b-field has nonzero

components bµz̄ = bµ. By virtue of (4.61) and (4.63) this implies the following relation

between the U(1) field strength and the components of the complex structure (4.47)

Fµν = iK µ̄
ν , Fµν̄ = iK µ̄

ν̄ ,

Fµz = iLµ̄z, Fµz̄ = iLµ̄z̄ − bµ. (5.37)

From (4.61) it follows that the complex structure Kk
l cannot be proportional to Jkl. A

good choice is K1
2̄ = 1, K2

1̄ = −1, and other unrelated components zero. This corresponds

to the choice

F12 = i, F12̄ = 0. (5.38)

On the other hand, the field strength can be computed from the U(1) potentials (4.66).

Assuming a quadratic form of W (so that its second derivatives WMN are constants) and

with the above choice of K, this implies a relation between components of L and second

derivatives of W . It turns out that we can find a non-trivial15 solution if Wµν = Wµν̄ = 0.

In that case, we find that we have to satisfy the following relations

L1̄
z = W1z − b2 − iW2̄z,

L2̄
z = W2z + b1 + iW1̄z, (5.39)

while the other components of L are fixed by eq. (4.44) to be

L1
z = iL2̄

z, L2
z = −iL1̄

z, (5.40)

15Note that putting L and W to zero results in a rather trivial example in the sense that it corresponds

to a 4-dimensional maximally coisotropic system of the kind studied in [19] along with two chiral spectator

directions trivially wrapped by the brane.
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so that L is fully determined by specifying e.g. L1̄
z and L2̄

z. Let us take W1z, W2z, W1̄z,

W2̄z ∈ R and write the left hand side of (5.39) as

L1̄
z ≡ α = α1 + iα2,

L2̄
z ≡ β = β2 + iβ1, (5.41)

with αj and βj , j ∈ {1, 2} real so that (5.39) is solved by

α1 = W1z − b2, α2 = −W2̄z,

β2 = W2z + b1, β1 = W1̄z, (5.42)

or

W = (α1 + b2)(w
1z + w̄1z̄) + β1(w

1z̄ + w̄1z)

+(β2 − b1)(w
2z + w̄2z̄) − α2(w

2z̄ + w̄2z) + f(z, z̄), (5.43)

where f(z, z̄) is a real function. With this choice for L and W , the components of the U(1)

gauge field become (up to gauge transformations)

A1 = −1

2
(β2 − b1)z̄ +

1

2
(α2 + ib2)z −

i

2
w2,

A2 = +
1

2
(α1 + b2)z̄ +

1

2
(β1 − ib1)z +

i

2
w1, (5.44)

and

Az =
1

2
[β(β − 2b1) + α(α+ 2b2)]z̄ +

i

2
fz

+
1

2
(2iα1 − α2 + ib2)w

1 +
1

2
(2iβ2 − β1 − ib1)w

2 (5.45)

+
1

2
(β2 + 2iβ1 − b1)w̄

1 − 1

2
(α1 + 2iα2 + b2)w̄

2,

and their complex conjugates. These indeed yield the required components of the invariant

field strength (see eq. (5.37))

F1z = iα, F1z̄ + b1z̄ = β̄,

F2z = iβ, F2z̄ + b2z̄ = −ᾱ, (5.46)

while for Fzz̄ we find

Fzz̄ = −iα2(α1 + 2b2) − iβ1(β2 − 2b1) − iWzz̄, (5.47)

which shows that for certain solutions, Fzz̄ will depend not only on f(z, z̄), but also on

L and the b-field. Note that the choice α1 = −b2, β2 = b1 and α2 = β1 = 0, leads to

a solution where the boundary potential W is trivial (modulo a term f(z, z̄)), while L is

nontrivial and F1z = −ib2 and F2z = ib1. This situation should be contrasted with the

case where the b-field vanishes. In that case W necessarily has to be nontrivial for L to be

nontrivial (as can be seen from (5.39)).
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An explicit construction of this kind of space-filling D6-brane on a more non-trivial

target space — the simplest candidate being S3×S1×T 2 — should in principle be possible.

Furthermore, the solution of this subsection should be dual to a coisotropic D5-brane on

T 6 and it should be possible to make this duality explicit by the methods developed in the

following section. We leave these matters for further investigation.

6. Duality transformations

6.1 Generalities

T-duality transformations in N = (2, 2) supersymmetric non-linear σ-models correspond

to duality transformations which interchange the different types of superfields [2, 26, 29,

9, 30, 31]. The simplest ones are those that allow to exchange a chiral for a twisted

chiral superfield and vice-versa when an isometry is present. Gauging the isometry, one

imposes — using Lagrange multipliers — that the gauge fields are pure gauge. In this way,

integrating over the Lagrange multipliers gives back the original model. However when

integrating over the gauge fields (or their potentials which are unconstrained superfields)

one obtains the dual model.

Let us briefly review the case without boundaries. As a starting point we take the

action,

S(1) = 4

∫

d2σ d4θ

(

−
∫ Y

dqW (q, . . .) + (z + z̄)Y

)

, (6.1)

where Y is an unconstrained N = (2, 2) superfield, z is either a chiral or a twisted chiral

superfield and · · · stands for other, spectator fields. The equations of motion for Y give,

z + z̄ = W (Y, . . .), (6.2)

which upon inversion gives,

Y = U(z + z̄, . . .). (6.3)

Using this to eliminate Y yields the second order dual action,

Sdual = 4

∫

d2σ d4θ

∫ z+z̄

dq U(q, . . .). (6.4)

Take now z and z̄ to be chiral superfields and varying them yields,

D̄+D̄−Y = D+D−Y = 0, (6.5)

which is solved by putting Y = w + w̄ with w a twisted chiral superfield. If on the other

hand we started off with a field z which was twisted chiral we get upon integrating over z

and z̄,

D̄+D−Y = D+D̄−Y = 0, (6.6)
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which is now solved by putting Y = w+ w̄, with w a chiral superfield. The resulting second

order action (which is the action one starts with) is in both cases given by,

S = −4

∫

d2σ d4θ

∫ w+w̄

dqW (q, . . .). (6.7)

Let us illustrate this using the previous example, the WZW model on the Hopf surface

S3 × S1. We will first dualize the twisted chiral field to a chiral one. In order to do this

we rewrite the potential eq. (5.14) as,

V = −
∫ ww̄ dq

q
ln
(

q + zz̄
)

. (6.8)

With this the first order action is given by,

S(1) = −4

∫

d2σ d2θ d2θ̂

{

∫ eY

dq

q
ln
(

q + zz̄
)

+ Y ln z′z̄′
}

, (6.9)

where Y is an unconstrained superfield and z′ is a chiral superfield. Integrating over ln z′

and ln z̄′ gives the original model back. Integrating over Y gives the dual model with

action,

Sdual = −4

∫

d2σ d2θ d2θ̂

{

∫ z′′z̄′′ dq

q
ln
(

1 − q
)

− 1

2

(

ln z′z̄′
)2

}

, (6.10)

where we performed a change of coordinates z → z′′ = z z′ . Following the duality trans-

formation in detail we find that the chiral fields satisfy |z′′| ≤ 1 and z′ ≃ e2π(n1+in2) z′ with

n1, n2 ∈ Z. So the target manifold of the dual model factorizes as a product of a disk (with

a singular metric) and a torus.16

We now dualize the chiral field to a twisted chiral field. The first order action is given

by,

S(1) = 4

∫

d2σ d2θ d2θ̂

{

∫ eY

dq

q
ln
(

1 +
q

ww̄

)

− 1

2
(lnww̄)2 − Y lnw′w̄′

}

, (6.11)

where w′ is twisted chiral and Y is an unconstrained superfield. The original model is

recovered by integrating over lnw′ and ln w̄′. Integrating over Y gives the dual model,

Sdual = 4

∫

d2σ d2θ d2θ̂

{

∫ w′′w̄′′

dq

q
ln
(

1 − q
)

− 1

2

(

lnw′′′w̄′′′)2
}

, (6.12)

where we performed the following coordinate transformations,

w′′ =
1

w′ , w′′′ = ww′. (6.13)

16Note however that a proper treatment of this duality transformation requires the presence of a non-

trivial dilaton field in the dual model [26]. Indeed, if this were not the case we would have expected that

the dual model is hyper-Kähler which it is not.

– 27 –



J
H
E
P
1
0
(
2
0
0
8
)
1
0
8

One finds that |w′′| ≤ 1 and w′′′ ≃ e2π(n1+in2)w′′′ and the dual model once more factorizes

as D × T 2.

In the next section we will extend this duality to the case in which boundaries are

present. As already discussed in [19], the main difficulty is the construction of the right

boundary terms such that the boundary conditions of the various fields remain consistent

with the duality transformation. A crucial partial integration identity is here,

∫

d2σ d2θD′D̂′ (i u D̄D̄
′Y + i ūDD

′Y
)

− i

∫

dτ d2θ
(

D̄
′u D̄

′Y − D
′ūD

′Y
)

=

∫

d2σ d2θD′D̂′ Y
(

z + z̄
)

, (6.14)

where Y is a real and u (ū = u†) a complex unconstrained superfield. We also introduced

the chiral field z ≡ i D̄D̄
′u and z̄ ≡ iDD

′ū. Another essential equation is,

∫

d2σ d2θ D′D̂′ (i u D̄+D−Y + i ūD+D̄−Y
)

− i

∫

dτ d2θ
(

u D̄+D−Y − ūD+D̄−Y
)

=

∫

d2σ d2θ D′D̂′ Y
(

w + w̄
)

−
∫

dτ d2θ Y
(

w − w̄
)

, (6.15)

where Y is a real and u (ū = u†) a complex unconstrained superfield and where we intro-

duced the twisted chiral field w ≡ i D̄+D−u and w̄ ≡ iD+D̄−ū.

Throughout the remainder we will focus on the non-linear σ-model on T 4 and S3 ×S1

which we believe is sufficient to cover all subtleties involved. Additional examples can

easily be constructed.

6.2 Dualizing D3-branes on T 4

6.2.1 Dualizing a chiral field

We start from the example developed in section 5.1.2 where we will dualize the chiral

field to a twisted chiral field. Without altering the boundary potential — as the required

generalized Kähler transformation yields a total derivative contribution to the boundary

term — we take for the Kähler potential V = −ww̄ + (z + z̄)2/2. Furthermore we assume

that the arbitrary function f in the boundary potential eq. (5.7) exhibits the isometry as

well: f = f(z + z̄). Our starting point is the first order action,

S(1) =

∫

d2σ d2θD′D̂′
(

ww̄ − 1

2
Y 2 + i u D̄+D−Y + i ūD+D̄−Y

)

+i

∫

dτ d2θ

(

i

2

α

ᾱ
w2 − i

2

ᾱ

α
w̄2 + f(Y ) − u D̄+D−Y + ūD+D̄−Y

)

, (6.16)

with Y ∈ R and u ∈ C unconstrained superfields. From eqs. (5.4)–(5.8) we obtain the

boundary conditions,

D (αw + ᾱw̄ − β Y ) = 0,

D̄
(

αw + ᾱw̄ − β̄ Y
)

= 0, (6.17)
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and,

D
′Y = D

(

− β̄
ᾱ
w +

β̄

α
w̄ + i f ′(Y )

)

,

D̄
′Y = D̄

(

+
β

ᾱ
w − β

α
w̄ − i f ′(Y )

)

, (6.18)

where f ′(Y ) = df/dY . Integrating over u and ū in eq. (6.16) yields the original model

back. Integrating the first order action eq. (6.16) by parts using eq. (6.15) gives,

S(1) =

∫

d2σ d2θ D′D̂′
(

ww̄ − 1

2
Y 2 +

(

w′ + w̄′)Y

)

+i

∫

dτ d2θ

(

i

2

α

ᾱ
w2 − i

2

ᾱ

α
w̄2 + f(Y ) + i

(

w′ − w̄′)Y

)

, (6.19)

with w′ another twisted chiral field. Integrating over Y gives the dual model. The bulk

equation of motion for Y is,

Y = w′ + w̄′. (6.20)

The variation of the boundary term requires more care. Before doing this we note that we

can distinguish two cases: β = β̄ and β 6= β̄. Indeed when b ≡ β is real, eq. (6.17) implies

a Dirichlet boundary condition,

αw + ᾱw̄ = b Y, (6.21)

which is no longer true if β 6= β̄ where αw+ ᾱw̄−β Y becomes a complex boundary chiral

field. When β = β̄ we have — as can be seen from eq. (5.4) — no Dirichlet boundary

condition in the direction in which we dualize so we expect a D2-brane in the dual theory.

For β 6= β̄ the Dirichlet boundary condition eq. (5.4) does depend on the direction in

which we dualize resulting in a D4-brane in the dual theory. As the dual model describes

an A-brane on a 4-dimensional Kähler manifold, the dual D-brane must be a space-filling

coisotropic brane.

i. b = β = β̄. When b 6= 0, we get that because of eq. (6.21) the variation of Y is related

to that of w and w̄. Taking the boundary contribution of the variation of w and w̄ into

account — e.g. using eq. (4.13) — we get that the variation of the boundary term vanishes

provided that the Dirichlet boundary condition,

w′ − w̄′ = − b

ᾱ
w +

b

α
w̄ + i f ′(Y ), (6.22)

holds. This is — using eq. (6.20) — indeed equivalent to eq. (6.18).

The dual action becomes,

Sdual =

∫

d2σ d2θD′D̂′ (ww̄ + w′w̄′)

+i

∫

dτ d2θ

(

f(w′ + w̄′) − 1

2

(

w′ + w̄′)f ′(w′ + w̄′)

)

. (6.23)

– 29 –



J
H
E
P
1
0
(
2
0
0
8
)
1
0
8

We get two Dirichlet boundary conditions,

αw + ᾱw̄ = bw′ + b w̄′,

w′ − w̄′ = − b

ᾱ
w +

b

α
w̄ + i f ′(w′ + w̄′), (6.24)

where the first one follows from eq. (6.21) and the second one from eq. (6.22). They imply

— because of eq. (3.17) — two more Neumann boundary conditions. We end up with a

D2-brane (with a flat U(1) bundle) wrapping around a lagrangian submanifold of T 4.

ii. β 6= β̄. When performing the variation of the boundary term, one needs to realize

that because of eq. (6.17), αw + ᾱw̄ − β̄ Y is a complex chiral field on the boundary.

Solving this in terms of unconstrained superfields and appropriately taking the boundary

contributions of the bulk variations of w and w̄ into account we get that the variation of

the boundary term vanishes provided,

D

(

+w′ − w̄′ +
β̄

ᾱ
w − β̄

α
w̄ − i f ′(Y )

)

= 0,

D̄

(

−w′ + w̄′ − β

ᾱ
w +

β

α
w̄ + i f ′(Y )

)

= 0. (6.25)

This is indeed consistent with eqs. (6.18) and (6.20).

Summarizing, the dual action is given by,

Sdual =

∫

d2σ d2θD′D̂′ (ww̄ + w′w̄′)

+i

∫

dτ d2θ

(

i

2

α

ᾱ
w2 − i

2

ᾱ

α
w̄2 +

i

2
w′2 − i

2
w̄′2 + f(w′ + w̄′)

)

, (6.26)

and the Neumann boundary conditions can be rewritten as,

D̂w = i
β + β̄

β − β̄
Dw + i

αᾱ(1 − i f ′′) − ββ̄

α(β − β̄)
Dw′ − i

αᾱ(1 + i f ′′) + ββ̄

α(β − β̄)
Dw̄′,

D̂w′ = i
αᾱ(1 + i f ′′) − ββ̄

ᾱ(β − β̄)
Dw − i

β + β̄

β − β̄
Dw′ + i

αᾱ(1 + i f ′′) + ββ̄

α(β − β̄)
Dw̄, (6.27)

together with the complex conjugate of these expressions. We wrote f ′′ for ∂2f(w′ +

w̄′)/∂w′2. Denoting the twisted chiral fields w,w̄, w′ and w̄′ collectively by wa, we can

rewrite the Neumann boundary conditions as,

D̂wa = Ka
bDw

b, (6.28)

where consistency with D̂2 = −(i/2)∂/∂τ requires that K is a complex structure [19].

Indeed one shows that the Nijenhuis-tensor of the complex structure vanishes due to the

symmetry w′ + w̄′ in the function f . Note that K does not anticommute with the original

complex structure. So we get here a maximally coisotropic D4-brane. Using eq. (3.19) and
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comparing the result with eq. (2.19), we obtain the U(1) fieldstrength,

Fww′ =
αᾱ(1 − i f ′′) + ββ̄

ᾱ(β − β̄)
, Fww̄ = −β + β̄

β − β̄
, Fww̄′ = −αᾱ(1 + i f ′′) − ββ̄

ᾱ(β − β̄)
,

Fw′w̄ = −αᾱ(1 − i f ′′) − ββ̄

α(β − β̄)
, Fw′w̄′ =

β + β̄

β − β̄
, Fw̄w̄′ = −αᾱ(1 + i f ′′) + ββ̄

α(β − β̄)
.

(6.29)

This generalizes some of the configurations studied in e.g. [32 – 34] and [19].

6.2.2 Dualizing a twisted chiral field

With a generalized Kähler transformation, we can make the isometry manifest in the bulk

potential eq. (5.3),

V = zz̄ − 1

2

(

w + w̄
)2
, (6.30)

which because of eq. (4.3) modifies the boundary potential eq. (5.7) to,

W =
i

2

α+ ᾱ

αᾱ

(

αw2 − ᾱ w̄2
)

+ f(z, z̄). (6.31)

The fact that the boundary potential does not manifestly reflect the isometry — in fact

using the boundary condition eq. (5.4) one shows that it is invariant modulo total deriva-

tive terms — constitutes the whole subtlety for this particular case. We can rewrite the

boundary condition eq. (5.4) as,

(

α+ ᾱ
)

D(w + w̄) +
(

α− ᾱ
)

D
′(w + w̄) = 2β Dz, (6.32)

together with its complex conjugate. Once more we have to distinguish between two cases:

either α ∈ R or α 6= ᾱ. In the former case the dual theory describes a D2-brane while for

the latter we will obtain a D4-brane. Finally we can also rewrite the Neumann boundary

conditions in eq. (5.8) in an invariant way,

2αᾱD
′z + β̄

(

α+ ᾱ
)

D
′(w + w̄) = −β̄

(

α− ᾱ
)

D(w + w̄) + 2iαᾱ fzz̄ Dz, (6.33)

and its complex conjugate.

i. a ≡ α = ᾱ. We first rewrite the boundary potential. Writing z = D̄Λ and z̄ = DΛ̄

we get,

Sboundary = i

∫

dτ d2θ

{

− iβ
a

Λ D̄
′(w + w̄

)

+
iβ̄

a
Λ̄ D

′(w + w̄
)

+ f(z, z̄)

}

. (6.34)

Using this we write the first order action,

S(1) =

∫

d2σ d2θ D′D̂′
{

−zz̄ +
1

2
Y 2 − i u D̄D̄

′Y − i ūDD
′Y

}

+i

∫

dτ d2θ

{

− iβ
a

Λ D̄
′Y +

iβ̄

a
Λ̄ D

′Y + f(z, z̄)

}

, (6.35)
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where u is an unconstrained complex superfield and Y is a real unconstrained superfield.

Varying u yields back the original model. Varying z, δz = D̄δΛ gives a boundary term

which vanishes provided,

aD
′z + β̄ D

′Y = +i a fzz̄ Dz, (6.36)

which is consistent with eq. (6.33). Integrating eq. (6.35) by parts,

S(1) =

∫

d2σ d2θD′D̂′
{

−zz̄ +
1

2
Y 2 − Y

(

z′ + z̄′
)

}

+i

∫

dτ d2θ

{

D̄
′Y

(

iβ

a
Λ + D̄

′u

)

− D
′Y

(

iβ̄

a
Λ̄ + D

′ū

)

+ f(z, z̄)

}

. (6.37)

Varying Y gives a bulk equation of motion,

Y = z′ + z̄′, (6.38)

and a boundary contribution which vanishes provided,

iβ Λ + a D̄
′u = iβ̄Λ̄ + aD

′ū = 0. (6.39)

This immediately implies the Dirichlet boundary conditions,

z′ =
β

a
z, z̄′ =

β̄

a
z̄, (6.40)

which is consistent with eq. (6.32). Combining everything, we get the dual action,

Sdual =

∫

d2σ d2θD′D̂′
(

−zz̄ − 1

2

(

z′ + z̄′
)2
)

+ i

∫

dτ d2θ f(z, z̄), (6.41)

together with the Dirichlet boundary conditions in eq. (6.40) and the Neumann boundary

conditions,

aD
′z + β̄ D

′z′ = ia fzz̄ Dz, a D̄
′z̄ + β D̄

′z̄′ = −ia fzz̄ D̄z̄. (6.42)

We see that the dual model describes a B type D2-brane wrapping on a holomorphic

cycle determined by eq. (6.40) and we have a non-trivial U(1) bundle with non-vanishing

potentials,

Az = +
i

2
fz, Az̄ = − i

2
fz̄ . (6.43)

ii. α 6= ᾱ. Using the Dirichlet boundary condition eq. (5.4) we rewrite the boundary

potential eq. (6.31) in an invariant way,

W =
i (α + ᾱ)

2 (α − ᾱ)

(

1

αᾱ

(

βz + β̄z̄
)2 − (w + w̄)2

)

+ f(z, z̄). (6.44)
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With this we obtain the first order action,

S(1) =

∫

d2σ d2θ D′D̂′
{

−zz̄ +
1

2
Y 2 − i u D̄D̄

′Y − i ūDD
′Y

}

(6.45)

+i

∫

dτ d2θ

{

i (α+ ᾱ)

2 (α − ᾱ)

(

1

αᾱ

(

βz + β̄z̄
)2 − Y 2

)

+ f(z, z̄)

+D̄
′u

(

D̄
′Y +

2β̄

α− ᾱ
D̄z̄ − α+ ᾱ

α− ᾱ
D̄Y

)

− D
′ū

(

D
′Y − 2β

α− ᾱ
Dz +

α+ ᾱ

α− ᾱ
DY

)}

.

Integrating over u and ū gives us the original model back together with a boundary term

which vanishes provided,

D̄
′Y +

2β̄

α− ᾱ
D̄z̄ − α+ ᾱ

α− ᾱ
D̄Y = D

′Y − 2β

α− ᾱ
Dz +

α+ ᾱ

α− ᾱ
DY = 0, (6.46)

which is consistent with eq. (6.32). Integrating by parts, we rewrite eq. (6.45) as,

S(1) =

∫

d2σ d2θD′D̂′
(

−zz̄ +
1

2
Y 2 − Y

(

z′ + z̄′
)

)

(6.47)

+i

∫

dτ d2θ

{

i

2αᾱ

α+ ᾱ

α− ᾱ

(

βz + β̄z̄
)2 − i

α+ ᾱ

α− ᾱ

(

1

2
Y 2 − Y

(

z′ + z̄′
)

)

−i 2β̄

α− ᾱ
z′ z̄ − i

2β

α− ᾱ
z̄′ z + f(z, z̄)

}

.

Integrating over Y gives both in the bulk and in the boundary,

Y = z′ + z̄′. (6.48)

It is now straightforward to go to the second order expressions. One finds for the bulk

potential of the dual model,

V = zz̄ + z′z̄′, (6.49)

and for its boundary potential,

W = i
ββ̄

αᾱ

α+ ᾱ

α− ᾱ
zz̄ + i

α+ ᾱ

α− ᾱ
z′z̄′ − i

2β̄

α− ᾱ
z′ z̄ − i

2β

α− ᾱ
z̄′ z + f(z, z̄). (6.50)

The boundary conditions are given by,

D
′z = −ββ̄

αᾱ

α+ ᾱ

α− ᾱ
Dz + i fzz̄ Dz +

2β̄

α− ᾱ
Dz′,

D
′z′ =

2β

α− ᾱ
Dz − α+ ᾱ

α− ᾱ
Dz′, (6.51)

and their complex conjugates. We end up with a B type D4-brane wrapping around the four

torus. Once more we have a non-trivial U(1) bundle with potentials given by Az = iWz/2,

Az′ = iWz′/2 and their complex conjugates.
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6.3 Dualizing the branes on S3 × S1

6.3.1 Dualizing a twisted chiral field

i. From a D1- to a D2-brane. Our starting point is the D1-brane configuration

on S3 × S1 discussed in section 5.1.3. For simplicity we choose the Dirichlet boundary

conditions for the chiral field as z = z̄ = 0. We start from the first order action,

S(1) =

∫

d2σ d2θD′D̂′
{
∫ eY

dq

q
ln
(

q + zz̄
)

+ i u D̄D̄
′Y + i ūDD

′Y

}

(6.52)

+i

∫

dτ d2θ
{

Q(Y ) − Y Q′(Y ) − D̄
′u
(

D̄
′Y + i D̄Q′(Y )

)

+ D
′ū
(

D
′Y − iDQ′(Y )

)

}

,

where the Lagrange multipliers u and ū = u† are unconstrained complex superfields. Vary-

ing u and ū gives the bulk equations of motion D̄D̄
′Y = DD

′Y = 0 which are solved by

putting Y = lnww̄ with w a twisted chiral superfield. The variation of the Lagrange multi-

pliers yields a boundary term as well which vanishes if Y satisfies the boundary conditions,

D
′Y = +iQ′′(Y )DY,

D̄
′Y = −iQ′′(Y )D̄Y. (6.53)

Going to the second order action we precisely recover the D1-brane discussed in section 5.1.3

and eq. (6.53) is equivalent to the last boundary condition in eq. (5.18).

Upon integration by parts we rewrite the first order action eq. (6.52) as,

S(1) =

∫

d2σ d2θD′D̂′
{
∫ eY

dq

q
ln
(

q + zz̄
)

+ Y ln z′z̄′
}

+i

∫

dτ d2θ
{

Q(Y ) − Y Q′(Y ) −Q′(Y ) ln z′z̄′
}

, (6.54)

where we introduced the chiral field z′,

ln z′ ≡ i D̄D̄
′u, ln z̄′ ≡ iDD

′ū. (6.55)

Varying Y in eq. (6.54) gives an explicit expression for Y ,

Y = ln
(

1 − z′′z̄′′
)

− ln z′z̄′. (6.56)

Note that the boundary term in the variation vanishes as well by virtue of eq. (6.56). Going

to second order gives the dual model,

Sdual =

∫

d2σ d2θD′D̂′
{

∫ z′′z̄′′ dq

q
ln
(

1 − q
)

− 1

2

(

ln z′z̄′
)2

}

+i

∫

dτ d2θ Q(− ln z′z̄′), (6.57)

Where we redefined z′′ ≡ z z′. We have the boundary conditions,

z′′ = z̄′′ = 0,

D
′z′ = +iQ′′(− ln z′z̄′) Dz′, D̄

′z̄′ = −iQ′′(− ln z′z̄′) D̄z̄′, (6.58)
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where the Neumann boundary conditions follow from combining eqs. (6.53) with (6.56).

The dual model has a target geometry given by D × T 2 with a D2-brane wrapping

around the torus.

ii. From a D3- to a D4-brane. We now turn to the dualization of the D3-brane

configuration discussed in section 5.1.3. We consider the configuration given by the two

Neumann boundary conditions eq. (5.31) for the chiral superfield and the Dirichlet bound-

ary condition and Neumann boundary condition resulting from eq. (5.28) for the twisted

chiral superfield. We start from the first order action,

S(1) =

∫

d2σ d2θD′D̂′
{
∫ eY

dq

q
ln
(

q + zz̄
)

+ i u D̄D̄
′Y + i ūDD

′Y

}

+i

∫

dτ d2θ

{

W (Y ) − D̄
′u
(

D̄
′Y + im1 D̄ ln

(

eY + zz̄
)

+ im2 D̄ y
)

+D
′ū
(

D
′Y − im1 D ln

(

eY + zz̄
)

− im2 D y
)

}

, (6.59)

where W (Y ) stands for,

W (Y ) = −1

2
m1

(

ln(zz̄ + eY )
)2 −m2y ln zz̄ (6.60)

We introduced the Lagrange multipliers u and ū = u† as unconstrained complex superfields,

just like in the previous section. But now the gauge field Y also has to satisfy the boundary

conditions following from eq. (5.31),

D
′ ln zz̄ = +im1 D ln

(

eY + zz̄
)

− m2

zz̄
D eY ,

D̄
′ ln zz̄ = −im1 D̄ ln

(

eY + zz̄
)

− m2

zz̄
D̄ eY . (6.61)

Varying u and ū yields the bulk equations of motion D̄D̄
′Y = DD

′Y = 0, and a vanishing

boundary term if Y satisfies the boundary conditions,

D
′Y = +im1 D ln

(

eY + zz̄
)

+ im2 D y,

D̄
′Y = −im1 D̄ ln

(

eY + zz̄
)

− im2 D̄ y. (6.62)

The bulk equations of motion can be solved by requiring Y = ln(ww̄), where w is a twisted

chiral superfield. Implementing this in the first order action eq. (6.59) we recover the

original model with the D3-brane from section 5.1.3, for which the boundary conditions

eq. (6.62) are equivalent to the Dirichlet condition eq. (5.28) and the boundary conditions

eq. (6.61) reduce to eq. (5.31).

Using eq. (6.14) to partially integrate the first order action eq. (6.59), one gets

S(1) =

∫

d2σ d2θD′D̂′
{
∫ eY

dq

q
ln
(

q + zz̄
)

+ Y ln z′z̄′
}

+i

∫

dτ d2θ
{

W (Y ) −
(

m1 ln
(

eY + zz̄
)

+m2 y
)

ln z′z̄′
}

, (6.63)
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with a new chiral field z′,

ln z′ ≡ i D̄D̄
′u, ln z̄′ ≡ iDD

′ū. (6.64)

The equations of motion in the dual picture follow from varying Y in eq. (6.63),

Y = ln
(

1 − z′′z̄′′
)

− ln z′z̄′, (6.65)

in which we introduced z′′ ≡ z z′. Imposing the solution eq. (6.65) also eliminates the

boundary term arising from the variation of eq. (6.63) with respect to Y . This solution

also allows us to write down the second order action describing the dual model,

Sdual =

∫

d2σ d2θ D′D̂′
{

∫ z′′z̄′′ dq

q
ln
(

1 − q
)

− 1

2

(

ln z′z̄′
)2

}

(6.66)

+i

∫

dτ d2θ

{

1

2
m1

(

ln z′z̄′
)2

+ im2 ln

(

z′′

z̄′′

)

ln z′′z̄′′ − im2 ln

(

z′

z̄′

)

ln z′′z̄′′
}

.

Rewriting the boundary conditions eqs. (6.61), (6.62) in terms of the chiral fields z′, z′′

using eq. (6.65) leads to the following four Neumann boundary conditions,

D
′ ln
(

1 − z′′z̄′′
)

= −m2 D ln z′z̄′, D̄
′ ln
(

1 − z′′z̄′′
)

= −m2 D̄ ln z′z̄′ ,

D
′ ln z′z̄′ = +im1 D ln z′z̄′ −m2 D ln

(

z′′

z̄′′

)

,

D̄
′ ln z′z̄′ = −im1 D̄ ln z′z̄′ +m2 D̄ ln

(

z′′

z̄′′

)

. (6.67)

One can check that these boundary conditions are consistent with eq. (4.13) applied to the

dual action in eq. (6.66).

It is clear that the target space geometry of the dual model is described by D × T 2

with a spacefilling D4-brane. The U(1) bundle on the D4-bane can be found by using e.g.

eq. (2.9) and eq. (4.2) and leads to the following fieldstrength,

Fz′z̄′ = −i m1

z′z̄′
, Fz′′z̄′′ = 0,

Fz′z̄′′ = − m2

z′z̄′′
, Fz′′z̄′ =

m2

z′′z̄′
. (6.68)

6.3.2 Dualizing a chiral field

Our starting point is the D3-brane configuration described in section 5.1.3. The Neumann

boundary conditions for the chiral superfield are given by eq. (5.31), while the twisted chiral

superfield satisfies the Dirichlet condition eq. (5.28) and the Neumann condition derived

from it. We introduce a real unconstrained gauge superfield Y satisfying the boundary

condition,

D
′Y = im1 D ln

(

eY +ww̄
)

−m2 e
−Y

Dww̄,

D̄
′Y = −im1 D̄ ln

(

eY + ww̄
)

−m2e
−Y

D̄ww̄, (6.69)
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and,

D
′ ln (ww̄) = im1 D ln

(

eY + ww̄
)

+m2 DY,

D̄
′ ln (ww̄) = −im1 D̄ ln

(

eY + ww̄
)

+m2 D̄Y. (6.70)

This configuration allows us to distinguish two different cases. The first case appears

when m2 = 0, which will lead to the dual lagrangian D2-brane. The second situation is

characterized by m2 6= 0, so that we can construct the dual coisotropic D4-brane.

i. From a D3-brane to a lagrangian D2-brane. Let us start by taking m2 = 0. In

that case the boundary conditions eqs. (6.69) and (6.70) simplify and we can deduce the

following Dirichlet boundary condition from eq. (6.70),

−i ln
(w

w̄

)

= m1 ln
(

eY + ww̄
)

. (6.71)

We can write the first order action as,

S(1) = −
∫

d2σ d2θD′D̂′
{
∫ eY

dq

q
ln

(

1 +
q

ww̄

)

− 1

2

(

lnww̄
)2

(6.72)

−iu D̄+D−Y − iūD+D̄−Y

}

+i

∫

dτ d2θ

{

− m1

2

(

ln
(

ww̄ + eY
))2 − u D̄+D−Y + ūD+D̄−Y

}

,

again introducing (unconstrained) complex superfields u and ū = u†. The variation of the

action eq. (6.72) with respect to u and ū yields the equations of motion,

D−D̄+Y |θ′=θ̂′=0 = 0 = D+D̄−Y |θ′=θ̂′=0 , (6.73)

which is solved by Y = ln zz̄ with z a chiral superfield. The second order action gives the

original model with a D3-brane, described by the boundary conditions eqs. (5.28), (5.31).

To integrate the action eq. (6.72) by parts we use the identity eq. (6.15) and obtain,

S(1) = −
∫

d2σ d2θD′D̂′
{

∫ eY

dq

q
ln

(

1 +
q

ww̄

)

− 1

2

(

lnww̄
)2 − Y ln ss̄

}

(6.74)

+i

∫

dτ d2θ

{

− m1

2

(

ln
(

ww̄ + eY
))2

+ i Y ln
(s

s̄

)

}

,

where we introduced the twisted chiral superfield s,

ln s ≡ i D̄+D−u , ln s̄ ≡ iD+D̄−ū . (6.75)

Varying Y in eq. (6.74) yields the equation of motion,

Y = lnw′′w̄′′ + ln
(

1 − w′w̄′), (6.76)

for which we performed the following coordinate transformation,

w′ =
1

s
, w′′ = sw . (6.77)
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The Dirichlet condition eq. (6.71) implies that a variation of Y at the boundary is

related to a variation of w and w̄. Therefore, the variation of eq. (6.74) with respect to Y

renders a boundary term supplemented with a boundary contribution of the variation of w

and w̄ — as can be found in e.g. eq. (4.13). By virtue of eq. (6.71) the boundary variation

leads to a Dirichlet boundary condition for w′,

−i ln
(

w′

w̄′

)

= 0. (6.78)

Using eqs. (6.71) and (6.76), we can deduce a (second) Dirichlet boundary condition for

w′′,

−i ln

(

w′′

w̄′′

)

= m1 lnw′′w̄′′, (6.79)

which is indeed consistent with eq. (6.69) using the equation of motion eq. (6.76).

The dual model is described by the following (second order) action,

Sdual = −
∫

d2σ d2θD′D̂′
{

∫ w′w̄′

dt

t
ln
(

1 − t
)

− 1

2

(

lnw′′w̄′′)2
}

+i

∫

dτ d2θ

{

− m1

2

(

lnw′′w̄′′)2
}

. (6.80)

As a check one verifies that the two Dirichlet boundary conditions eqs. (6.78) and (6.79)

guarantee that the boundary term in the variation of the action eq. (6.80) vanishes.

The dual target space geometry corresponds to D×T 2 with a D2-brane wrapping along

one direction in D and one direction in T 2. On T 2 the brane can only wrap in specific

(quantized) directions, given by the integer m1.

ii. From a D3-brane to a coisotropic D4-brane. To arrive at a coisotropic D4-brane

it is necessary to assume m2 6= 0, and that in this case the gauge superfield Y satisfies the

complete boundary conditions eqs. (6.69) and (6.70). The first order action now reads,

S(1) = −
∫

d2σ d2θD′D̂′
{
∫ eY

dq

q
ln

(

1 +
q

ww̄

)

− 1

2

(

lnww̄
)2

−i u D̄+D−Y − i ūD+D̄−Y

}

+i

∫

dτ d2θ

{

− m1

2

(

ln
(

ww̄ + eY
))2

+ Y

(

i ln
(w

w̄

)

+m1 ln
(

eY + ww̄
)

)

−u D̄+D−Y + ūD+D̄−Y

}

. (6.81)

Variation of the unconstrained superfields u, ū allows us to go back to the original model

with a D3-brane, like we mentioned above.
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In order to find the coisotropic D4-brane, we need to integrate the action (6.81) by

parts using the identity eq. (6.15),

S(1) = −
∫

d2σ d2θD′D̂′
{

∫ eY

dq

q
ln

(

1 +
q

ww̄

)

− 1

2

(

lnww̄
)2 − Y ln ss̄

}

(6.82)

+i

∫

dτ d2θ

{

− m1

2

(

ln
(

ww̄ + eY
))2

+Y

(

i ln
(w

w̄

)

+m1 ln
(

eY + ww̄
)

)

+ i Y ln
(s

s̄

)

}

.

Varying Y in eq. (6.82) gives the same bulk equations of motion eq. (6.76) as above.

From the boundary condition eq. (6.70) we notice that Y , w and w̄ are constrained at the

boundary and need to be solved in terms of unconstrained complex superfields if we want

to have the correct boundary variation. One can show that the variation of the boundary

terms, including boundary contributions of the bulk variation, vanishes provided,

D

(

ln

(

w′′

w̄′′

)

− im1 lnw′′w̄′′ −m2 ln
(

1 − w′w̄′)
)

= 0,

D̄

(

ln

(

w′′

w̄′′

)

− im1 lnw′′w̄′′ +m2 ln
(

1 − w′w̄′)
)

= 0. (6.83)

which is indeed consistent with eqs. (6.76), (6.69) and (6.70). The other two Neumann

boundary conditions can then be derived from eqs. (6.70) and (6.76),

D

(

ln

(

w′

w̄′

)

−m2 lnw′′w̄′′
)

= 0,

D̄

(

ln

(

w′

w̄′

)

+m2 lnw′′w̄′′
)

= 0. (6.84)

The dual model is given by the second order action,

Sdual = −
∫

d2σ d2θD′D̂′
{

∫ w′w̄′

dt

t
ln
(

1 − t
)

− 1

2

(

lnw′′w̄′′)2
}

(6.85)

+i

∫

dτ d2θ

{

m1

2

(

lnw′′w̄′′)2 +m1 ln
(

1 − w′w̄′) ln
(

w′′w̄′′)

+i ln
(

w′′w̄′′) ln

(

w′′

w̄′′

)

+ i ln
(

1 − w′w̄′) ln

(

w′′

w̄′′

)}

.

One can check the consistency of the dual model by showing that the boundary term

eq. (4.13) vanishes. However, the boundary conditions eqs. (6.83) and (6.84) imply that w′

and w′′ are constrained at the boundary and that the boundary conditions can be solved

by introducing chiral boundary superfields. Taking the variation to these boundary fields

yields a boundary term which vanishes by virtue of eq. (6.83).
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The Neumann boundary conditions eqs. (6.83) and (6.84) may be written as,

D̂w′ = i
m2

2w
′w̄′ − (1 − im1 )(1 − w′w̄′)

2m2 w′′w̄′ Dw′′

+i
m2

2w
′w̄′ + (1 + im1 )(1 − w′w̄′)

2m2 w̄′′w̄′ Dw̄′′ ,

D̂w′′ = −i w′′m
2
2w

′w̄′ − (1 + im1 )(1 −w′w̄′)
2m2 w′(1 − w′w̄′)

Dw′

−i w′′m
2
2w

′w̄′ + (1 + im1 )(1 − w′w̄′)
2m2 w̄′(1 − w′w̄′)

Dw̄′, (6.86)

accompanied by the complex conjugate of these conditions. One can show that the

Nijenhuis-tensor of the complex structure indeed vanishes. Hence, the dual model is a

coisotropic D4-brane on D × T 2 with the U(1) fieldstrength given by,

Fw′w′′ = +
m2

2w
′w̄′ + (1 − im1)(1 − w′w̄′)
2m2 w′w′′(1 − w′w̄′)

, Fw′w̄′′ = +
m2

2w
′w̄′ − (1 + im1 )(1 − w′w̄′)
2m2 w′w̄′′(1 − w′w̄′)

,

Fw′′w̄′ = −m
2
2w

′w̄′ − (1 − im1)(1 − w′w̄′)
2m2w̄′w′′(1 − w′w̄′)

, Fw̄′w̄′′ = +
m2

2w
′w̄′ + (1 + im1)(1 − w′w̄′)
2m2w̄′w̄′′(1 − w′w̄′)

.

(6.87)

This is an interesting example of a maximally coisotropic D-brane as the target manifold

D × T 2 is not hyper-Kähler17 in contrast with previously studied examples of coisotropic

branes [32 – 34] and [19].

6.4 Dualizing a chiral/twisted chiral pair to a semi-chiral multiplet

While we will discuss D-branes in a semi-chiral geometry in detail in [20] we can already

gain some insights by using the duality transformation proposed in [29] which — if an

appropriate isometry is present — allows one to dualize a pair consisting of a chiral and a

twisted chiral superfield into a semi-chiral superfield and vice-versa. In [35, 36, 30] and [31],

the underlying gauge theory structure has been developed and T-duality transformations

were discussed. We first briefly review the case without boundaries closely following the

treatment in [30]. Consider a system described by a single chiral superfield z and a single

twisted chiral superfield w. The potential has the form,

V = V
(

z + z̄, w + w̄, i(z − z̄ − w + w̄)
)

. (6.88)

We introduce three unconstrained real superfields Y , Ỹ and Ŷ and construct the complex

combinations,

YL ≡ Ŷ + i
(

Y − Ỹ
)

, YR ≡ Ŷ + i
(

Y + Ỹ
)

. (6.89)

17This can easily be seen from the fact that the Kähler potential does not satisfy the Monge-Ampère

equation, Vw′w̄′Vw′′w̄′′ − Vw′w̄′′Vw′′w̄′ = h(w′, w′′)h̄(w̄′, w̄′′) with h some non-vanishing holomorphic func-

tion.
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Note that YL and YR are not independent as YL+ ȲL = YR+ ȲR. With this we write down

the first order action,

S(1) = 4

∫

d2σ d2θ d2θ̂
{

V (Y, Ỹ , Ŷ ) + υ+
D̄+YL + ῡ+

D+ȲL

+υ− D̄−YR + ῡ− D−ȲR
}

. (6.90)

Integrating over the unconstrained complex fermionic Lagrange multipliers υ± and ῡ± puts

the semi-chiral gauge invariant fieldstrengths to zero: F+ = F̄+ = F− = F̄− = 0 where,

F+ = i D̄+YL, F̄+ = iD+YL, F− = i D̄−YR, F̄− = iD−YR. (6.91)

This is solved by putting YL = 2i (z −w) and YR = 2i (z + w̄) which brings us back to the

original model. If on the other hand we integrate over Y , Ỹ and Ŷ , we obtain the dual

model which is now a function of the semi-chiral fields r ≡ D̄+υ
+, r̄ ≡ D+ῡ

+, s ≡ D̄−υ−

and s̄ ≡ D−ῡ−. They satisfy D̄+r = D+r̄ = D̄−s = D−s̄ = 0 [6].

We now consider boundaries as well. For concreteness we will start from the D3-

brane on T 4, discussed in section 5.1.2, as an explicit example. For simplicity we choose

α = i a 6= 0 and β = i b, a, b ∈ R, which results in a Dirichlet boundary condition of the

form,

−i
(

w − w̄
)

= −i b
a

(

z − z̄
)

. (6.92)

Using a general Kähler transformation we write the potential as,

V
(

z + z̄, w + w̄, i(z − z̄ − w + w̄)
)

=
g + 1

2

(

z + z̄
)2

+
g − 1

2

(

w + w̄
)2

+

g

2

(

z − z̄ − w + w̄
)2
, (6.93)

where g ∈ R and g 6∈ {0,±1}. This in its turn implies a boundary potential,

W
(

z + z̄, w + w̄, i(z − z̄ − w + w̄)
)

= i g
(

w + w̄
)(

z − z̄ − w + w̄
)

, (6.94)

where once more we simplified the expressions by taking f(z, z̄) = 0 in eq. (5.7). With this

we write the first order action,

S(1) = −
∫

d2σ d2θ D′D̂′
(

V (Y, Ỹ , Ŷ ) + υ+
D̄+YL + ῡ+

D+ȲL + υ− D̄−YR + ῡ− D−Ȳ
)

+i

∫

dτ d2θ
(

W (Y, Ỹ , Ŷ ) − i υ+
D̄+YL + i ῡ+

D+ȲL + i υ− D̄−YR − i ῡ− D−ȲR
)

.

(6.95)

Integrating over the Lagrange multipliers υ± and ῡ± brings us back to the original model.

Integrating by parts, we rewrite the first order action as,

S(1) = −
∫

d2σ d2θD′D̂′
(

V (Y, Ỹ , Ŷ ) + i Y
(

r − r̄ + s− s̄
)

− i Ỹ
(

r − r̄ − s+ s̄
)

+Ŷ
(

r + r̄ + s+ s̄
)

)

+ i

∫

dτ d2θ
(

W (Y, Ỹ , Ŷ ) + Y
(

r + r̄ − s− s̄
)

−Ỹ
(

r + r̄ + s+ s̄
)

− i Ŷ
(

r − r̄ − s+ s̄
)

)

. (6.96)

– 41 –



J
H
E
P
1
0
(
2
0
0
8
)
1
0
8

The bulk equations of motion for Y , Ỹ and Ŷ give,

Y = − i

g + 1

(

r − r̄ + s− s̄
)

,

Ỹ =
i

g − 1

(

r − r̄ − s+ s̄
)

,

Ŷ =
1

g

(

r + r̄ + s+ s̄
)

, (6.97)

from which we get the dual potential,

Vdual(r, r̄, s, s̄) =
1

2(g + 1)

(

r − r̄ + s− s̄
)2

+
1

2(g − 1)

(

r − r̄ − s+ s̄
)2

+
1

2g

(

r + r̄ + s+ s̄
)2
. (6.98)

The treatment of the boundary terms requires more care. Once more we have to

distinguish two cases: a = b and a 6= b. The former will yield a D2-brane while the latter

gives a D4-brane.

i. a = b. From eq. (6.92) we find that the gauge fields satisfy a Dirichlet boundary

condition,

Ŷ = 0. (6.99)

Implementing this in the boundary term of eq. (6.96) we find that integrating over Ỹ and

Y yields two Dirichlet boundary conditions in the dual model,

r + r̄ = s+ s̄ = 0, (6.100)

which is consistent with eqs. (6.99) and (6.97). As will be shown in [20], a Dirichlet

boundary condition on a semi-chiral superfield is always paired with a Neumann boundary

condition, analogous to what happens for a twisted chiral superfield. So we end up with D2-

brane whose position is determined by eq. (6.100). The dual generalized Kähler potential

is given by eq. (6.98) and the dual boundary potential vanishes, Wdual(r, r̄, s, s̄) = 0.

ii. a 6= b. In order that our expressions are not unnecessarily cluttered we choose a = 1

and b = 0 (other choices yield similar results as long as a 6= b). We find now that eq. (6.92)

implies the boundary conditions,

D̄
(

Ŷ − i Y
)

= D
(

Ŷ + i Y
)

= 0. (6.101)

This means that Ŷ − i Y is a boundary chiral field. Integrating over Ỹ in the boundary

term of eq. (6.96) gives an expression equivalent to the last of eq. (6.97). When integrating

over Y and Ỹ in the boundary term, we need to take the fact that they are constrained —

as expressed by eq. (6.101) – properly into account. We find that the variation vanishes

provided the following two Neumann boundary conditions hold,

D̄
(

g r + (g − 2)r̄ − g s− (g − 2)s̄
)

= 0,

D
(

(g − 2)r + g r̄ − (g − 2)s − g s̄
)

= 0. (6.102)
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Using eq. (6.97) we can write eq. (6.101) in the second order formalism which yields two

more Neumann boundary conditions,

D̄
(

r + (1 + 2g)r̄ + s+ (1 + 2g)s̄
)

= 0,

D
(

(1 + 2g)r + r̄ + (1 + 2g)s + s̄
)

= 0. (6.103)

So now we end up with a D4-brane. Note that the boundary conditions eqs. (6.102)

and (6.103) imply the existence of an additional complex structure similar to maximally

coisotropic branes on T 4. The generalized Kähler potential is given by eq. (6.98) while the

boundary potential is now given by,

Wdual(r, r̄, s, s̄) = − i

g(g + 1)

{

(r + s)
(

(1 + 2g)(r − s) − (r̄ − s̄)
)

−(r̄ + s̄)
(

(1 + 2g)(r̄ − s̄) − (r − s)
)

}

. (6.104)

In fact this particular example already perfectly illustrates the two possible types of

boundary conditions one can have when dealing with a semi-chiral multiplet: either one

has 2 Dirichlet and 2 Neumann conditions or one has 4 Neumann conditions [20].

7. Conclusions and discussion

We investigated the allowed boundary conditions for a non-linear σ-model in N = 2 bound-

ary superspace parameterized by chiral and twisted chiral superfields. This corresponds to

classifying D-branes in a bihermitian target manifold geometry for which the two complex

structures commute. There is no need to distinguish between A- and B-type superspace

boundaries as changing the superspace boundary from B-type (which we used through-

out the paper) to A-type amounts to exchanging the chiral superfields for twisted chiral

superfields and vice-versa. Having n, n ∈ N chiral superfields and 2m1 + m2, m1 ∈ N,

m2 ∈ {0, 1}, twisted chiral superfields we found that Dp-brane configurations are possible

where p = 2(a+ b+m1) +m2 with a ∈ {0, 1, 2, . . . , n} and b ∈ {0, 1, 2, . . . ,m1}. Whenever

b 6= 0 one needs an additional complex structure on (a subspace of) the target manifold.

In fact after the initial exploration of semi-chiral fields in the presence of boundaries

in section 6.4 we can already anticipate on the results of [20] and illustrate the emerging

general picture. In table 1 we summarize the various N = (2, 2) superfields and list their

components in N = 2 boundary superspace. Chiral fields give rise to constrained boundary

superfields while twisted chiral and semi-chiral fields give unconstrained boundary super-

fields. Looking at the unconstrained boundary superfields one realizes immediately that

imposing a Dirichlet boundary condition on them implies a Neumann boundary condition

as well. A second type of boundary conditions for the unconstrained boundary superfields is

obtained by requiring that a certain combination of them becomes chiral on the boundary.

For this one needs an additional complex structure on a subspace of the target manifold.

All these cases were illustrated in the examples developed in sections 5 and 6.

In order to make direct contact with string compactifications we have to address the

study of D-branes in the six dimensional case. With what we have learned from the previous

we find that we can distinguish six different cases according to their superfield content.
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N = (2, 2) fields N = (2, 2) constraints N = 2 fields boundary type

chiral: z, z̄ D̄±z̄ = D±z = 0 z, D
′z, z̄, D̄

′z̄ constrained

twisted chiral: w, w̄ D̄+w = D−w = 0, w, w̄ unconstrained

D+w̄ = D̄−w̄ = 0

semi-chiral: r, r̄, s, s̄ D̄+r = D+r̄ = 0, r, r̄, s, s̄ unconstrained, the

D̄−s = D−s̄ = 0 D
′r, D̄

′r̄, D
′s, D̄

′s̄ last 4 are auxiliary

Table 1: The three types of N = (2, 2) superfields together with their reduction to N = 2 boundary

superspace.

1. 3 chiral superfields

These are B-branes on a Kähler manifold. We can have D0-, D2-, D4- or D6-branes

wrapping on holomorphic cycles.

2. 2 chiral superfields and one twisted chiral superfield

We can have D1-, D3- or D5-branes on a bihermitian manifold with commuting

complex structures.

3. 1 chiral superfield and two twisted chiral superfields

The manifold is bihermitian with commuting complex structures. It allows for D2- or

D4-branes with the standard boundary conditions for the twisted chiral superfields.

However, if the manifold allows for generalized coisotropic boundary conditions on

the twisted chiral superfields one gets in addition a new type of D4-branes and D6-

branes.

4. 3 twisted chiral superfields

Here we are dealing with A-branes on Kähler manifolds. Either we have a lagrangian

D3-brane or a coisotropic D5-brane.

5. 1 chiral superfield and a semi-chiral multiplet

The manifold is bihermitian and the kernel of the commutator of the two complex

structures is 2-dimensional. If one imposes Dirichlet boundary conditions in the semi-

chiral directions one can have D2- or D4-branes. Having full Neumann boundary

conditions in the semi-chiral directions gives either D4- or D6-branes.

6. 1 twisted chiral superfield and a semi-chiral multiplet

The manifold is bihermitian and the kernel of the commutator of the two complex

structures is 2-dimensional. If one imposes Dirichlet boundary conditions in the semi-

chiral directions one can have a D3-brane. Having full Neumann boundary conditions

in the semi-chiral directions gives a D5-brane.

One sees that even in very simple geometries such as tori — which can be described in terms

of any of the field combinations listed above — there is a wealth of D-brane configurations

compatible with the N = 2 supersymmetry. This might have interesting consequences

for model building using intersecting brane configurations (see e.g. [34] where the use of

coisotropic branes in such settings was initialized).
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Note from the discussion above that D0- and D1-branes preserving the N = 2 su-

persymmetry are relatively “rare”. Indeed D0-branes can only occur on Kähler manifolds

solely described in terms of chiral fields. On the other hand we find that D1-branes require

a target manifold geometry described in terms of a single twisted chiral and an arbitrary

number of chiral superfields.

The present analysis clearly motivates a thorough study of semi-chiral superfields in

the presence of boundaries as well [20]. One potentially interesting approach could be to

“linearize” the model along the lines of [37]. Indeed there it was shown that any model

described in terms of m semi-chiral multiplets is equivalent to a gauged σ-model in terms

of 2m chiral and 2m twisted chiral superfields. While the ungauged model has an indefinite

metric, we do not see any obvious obstruction to apply the results obtained in this paper

to this particular instance.

It is clear that it would be desirable to have a better (global) geometric characteri-

zation of these models, e.g. by combining the present results with those in [17] and [16].

Presumably a formulation in terms of generalized complex geometry (see e.g. [23]) will

clarify many issues. Indeed, it has been shown [38] that the correct generalization of the

notion of A and B branes in this context corresponds to that of a generalized complex

submanifold of a generalized Kähler manifold. This is presently under investigation.

The study of the duality transformations between chiral and twisted chiral superfields

led to a surprisingly simple method to construct new examples of coisotropic D-branes. In

particular we explicitly constructed the first example of a coisotropic D-brane on a manifold

which is not hyper-Kähler. The method developed in the examples can easily be extended

to a general construction. Take e.g. a model with generalized Kähler potential given by

V (z+ z̄, w+ w̄) and a prepotential Q(z+ z̄, w+ w̄). We consider a D3-brane with Dirichlet

boundary condition,

−i
(

w − w̄
)

= −Q′

V ′′ − ia
(

z − z̄
)

, (7.1)

where a ∈ R and where a prime denotes a derivative with respect to w. The boundary

potential W is then given by,

W = Q− Q′V ′

V ′′ . (7.2)

When dualizing the chiral to a twisted chiral field we distinguish two cases:

• a = 0 resulting in a dual model where a D2-brane wraps a lagrangian submanifold.

• a 6= 0 resulting in a dual model where we have a space filling coisotropic D4-brane.

Another immediate application of the present results would be an analysis of the β-

functions for the models discussed. As shown in [39], such a calculation is greatly facilitated

by doing it in N = 2 superspace which automatically gives the stability conditions that

are satisfied by supersymmetric configurations. A particularly simple and straightforward

exercise would be the calculation of the 1-loop β-function for the maximally coisotropic
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D4-brane on T 4 constructed in section 6.2.1 and this would make a direct connection with

the results developed in [40].

Finally, the present analysis could perhaps allow to simplify some of the results in [41]

by reformulating the gauged linear σ-models in N = 2 boundary superspace.
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A. Conventions, notations and identities

We denote the worldsheet coordinates by τ ∈ R and σ ∈ R, σ ≥ 0. Sometimes we use

worldsheet light-cone coordinates,

σ=| = τ + σ, σ= = τ − σ. (A.1)

The N = (1, 1) (real) fermionic coordinates are denoted by θ+ and θ− and the correspond-

ing derivatives satisfy,

D2
+ = − i

2
∂=| , D2

− = − i

2
∂= , {D+,D−} = 0. (A.2)

The N = (1, 1) integration measure is explicitely given by,
∫

d2σ d2θ =

∫

d2σD+D−. (A.3)

Passing from N = (1, 1) to N = (2, 2) superspace requires the introduction of two more

real fermionic coordinates θ̂+ and θ̂− where the corresponding fermionic derivatives satisfy,

D̂2
+ = − i

2
∂=| , D̂2

− = − i

2
∂= , (A.4)

and again all other — except for (A.2) — (anti-)commutators do vanish. The N = (2, 2)

integration measure is,
∫

d2σ d2θ d2θ̂ =

∫

d2σD+D− D̂+D̂−. (A.5)

Quite often a complex basis is used,

D± ≡ D̂± + iD±, D̄± ≡ D̂± − iD±, (A.6)

which satisfy,

{D+, D̄+} = −2i ∂=| , {D−, D̄−} = −2i ∂=, (A.7)
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and all other anti-commutators do vanish.

When dealing with boundaries in N = (2, 2) superspace, we introduce various deriva-

tives as linear combinations of the previous ones. We summarize their definitions together

with the non-vanishing anti-commutation relations. We have,

D ≡ D+ +D−, D̂ ≡ D̂+ + D̂−,

D′ ≡ D+ −D−, D̂′ ≡ D̂+ − D̂−, (A.8)

with,

D2 = D̂2 = D′2 = D̂′2 = − i

2
∂τ ,

{D,D′} = {D̂, D̂′} = −i∂σ. (A.9)

In addition we also use,

D ≡ D+ + D− = D̂ + iD, D
′ ≡ D+ − D− = D̂′ + iD′,

D̄ ≡ D̄+ + D̄− = D̂ − iD, D̄
′ ≡ D̄+ − D̄− = D̂′ − iD′. (A.10)

They satisfy,

{D, D̄} = {D′, D̄′} = −2i ∂τ ,

{D, D̄′} = {D′, D̄} = −2i ∂σ . (A.11)
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